
Nxopen	c	reference	guide

http://gluvoob.com/c3?utm_term=nxopen+c+reference+guide

Getting	Started	with	NX	Open	Revision	12.0.	September	2017	©	2017	Siemens	Product	Lifecycle	Management	Software	Inc.	All	rights	reserved.	Unrestricted	Table	of	Contents	Chapter	1:	Introduction	1	What	Is	NX	Open	..	1	Purpose	of	this	Guide
...	1	Where	To	Go	From	Here	...	1	Other	Documentation	..	2	Example	Code	..	3	Chapter	2:	Using	the	NX	Journal	Editor	4	System
Requirement	—	The	.NET	Framework	4	Typographic	Conventions	..	4	Licensing	...	4	The	Guide	Functions	...	5	Example	1:	Hello	World
..	5	Example	2:	Collections...	6	Example	3:	Creating	Simple	Geometry	...	8	Example	4:	Reading	Attributes	..	9	Example	5:	WinForms	(The	Hard	Way)	..	11
What	Next?	..	14	Chapter	3:	Using	Visual	Studio	Express	15	Installing	Visual	Studio	...	15	Installing	NX	Open	Templates	...	16	Licensing	Issues	Again
..	16	Example	1:	Hello	World	Again...	16	Example	2:	Declaring	Variables	..	19	Example	3:	WinForms	Again	..	20	Example	4:	Hello	World	Yet	Again	(the	Hard	Way)	22
Example	5:	Editing	a	Recorded	Journal	...	24	Debugging	in	Visual	Studio	...	27	Chapter	4:	The	Visual	Basic	Language	29	The	Development	Process...	29	Structure	of	a	Visual	Basic	Program..	29	An
Example	Program	..	30	Lines	of	Code...	31	Built-In	Data	Types	..	32	Declaring	and	Initializing	Variables	..	32	Omitting	Variable
Declarations...	33	Data	Type	Conversions...	34	Arithmetic	and	Math..	34	Logical	Values	&	Operators...	35	Arrays
..	35	Other	Types	of	Collections	..	36	Strings..	36	Enumerations	...	37
Nothing..	37	Decision	Statements	..	38	Looping	...	38	Functions	and	Subroutines	...	39	Classes
...	40	Shared	Functions	..	41	Object	Properties	..	41	Hierarchy	&	Inheritance	..	42	Chapter	5:	Concepts	&	Architecture
43	The	Levels	of	NX	Open	..	43	More	About	NXOpen.UF	...	43	The	NX	Open	Inheritance	Hierarchy	...	44	Sessions	and	Parts	..	44	Objects	and	Tags
...	45	Factory	Objects	..	46	Object	Collections	...	47	The	Builder	Pattern	...	47	Exploring	NX	Open	By	Journaling
..	49	The	“FindObject”	Problem	..	49	Mixing	SNAP	and	NX	Open	...	50	Chapter	6:	Positions,	Vectors,	and	Points	52	Point3d	Objects	...	52	Vector3d	Objects
...	53	Points	...	53	Chapter	7:	Curves	..	55	Lines	...	55	Associative	Line	Features	..	55
Arcs	and	Circles	...	56	Associative	Arc	Features..	58	Conic	Section	Curves	...	59	Splines	...	59	Studio	Splines
...	61	Sketches	..	62	Unrestricted	Chapter	8:	Simple	Solids	and	Sheets	64	Creating	Primitive	Solids	...	64	Sections
...	65	Extruded	Bodies	..	67	Revolved	Bodies	..	68	Chapter	9:	Object	Properties	&	Methods	69	NXObject	Properties
..	69	Curve	and	Edge	Properties	...	71	Face	Properties	..	74	Chapter	10:	Feature	Concepts	76	What	is	a	Feature	?	...	76	Types	of
Features	..	76	Feature	Display	Properties	...	77	Using	Features	and	Bodies	..	78	Units	...	78	Expressions
...	79	Creating	Expressions	...	81	Using	Expressions	to	Define	Features	..	82	Chapter	11:	Assemblies	84	Introduction	..	84	The
Obligatory	Car	Example...	84	Trees,	Roots,	and	Leaves	..	84	Components	and	Prototypes	..	85	Cycling	Through	An	Assembly	...	87	Indented
Listings...	88	Component	Positions	&	Orientations	...	88	Object	Occurrences	..	89	Creating	an	Assembly	..	91	More	Advanced	Positioning
..	93	Changing	Reference	Sets	..	94	Other	Topics	..	95	Chapter	12:	Drawings	&	Annotations	96	Drawings...	96	Dimensions
..	97	Notes	..	98	Chapter	13:	CAM...	99	Cycling	Through	CAM	Objects..	99	Editing	CAM	Objects	..100
CAM	Views	...101	Creating	a	Tool	...102	Chapter	14:	Block-Based	Dialogs	103	When	to	Use	Block-Based	Dialogs..103	How	Block-Based	Dialogs	Work
...104	The	Overall	Process..104	Using	Block	UI	Styler	...105	Template	Code	...106	The	initialize_cb	and	dialogShown_cb	Event	Handlers107	The
apply_cb	Event	Handler	...107	The	update_cb	Event	Handler	..109	Callback	Details..110	Precedence	of	Values	...110	Getting	More
Information..111	Chapter	15:	Selecting	NX	Objects	112	Selection	Dialogs	...112	SelectObject	Blocks	..117	Selecting	Faces,	Curves	and	Edges	using	Collectors119	Selection	by
Database	Cycling	...121	Chapter	16:	Exceptions....................................	123	Exceptions	..123	Example:	Unhandled	Exceptions	..124	Handling	an	Exception	..125	Exception
Properties	...126	NX	Exceptions...126	Using	Undo	for	Error	Recovery	...127	Avoiding	Exceptions	..127	The	Finally	Block
...128	Chapter	17:	Troubleshooting	129	Using	the	NX	Log	File...129	Invalid	Attempt	to	Load	Library	...129	XXX	is	not	a	member	of	NXOpen	...130	Unable	to	Load
Referenced	Library...131	Visual	Studio	Templates	Missing	..131	Failed	to	Load	Image..131	Chapter	1:	Introduction	■	What	Is	NX	Open	NX	Open	is	an	Application	Programming	Interface	(API)	that	lets	you	write	programs	to	customize
or	extend	NX.	The	benefit	is	that	applications	created	this	way	can	often	speed	up	repetitive	tasks,	and	capture	important	design	process	knowledge.	There	is	a	broad	range	of	NX	Open	functions,	which	provide	capabilities	like		Creating	part	geometry,	assemblies,	drawings,	and	CAE	and	CAM	objects		Cycling	through	the	objects	in	a	part	file,	reading
information	or	performing	various	operations	on	them		Creating	custom	user	interfaces	that	allow	users	to	select	objects	and	enter	data	Some	typical	applications	of	these	functions	are:					Creating	part	geometry	or	drawings	according	to	your	local	standards	Importing	data	from	other	sources,	outside	of	NX	Reading	data	from	objects	in	a	part	file,
and	writing	it	out	in	some	form	of	report	Building	custom	applications	to	make	processes	faster	or	easier	to	understand	Of	course,	these	are	just	a	few	examples	of	what	is	possible.	You	can	probably	think	of	many	little	repetitive	processes	that	you	would	like	to	automate	to	speed	up	your	work	or	standardize	your	output.	If	you’d	like	a	little	more
background	information,	please	continue	reading	here.	If	you	can’t	wait,	and	you	just	want	to	start	writing	code	immediately,	please	skip	to	chapter	2,	where	we	show	you	how	to	proceed.	■	Purpose	of	this	Guide	This	guide	is	a	beginner’s	introduction	to	programming	using	NX	Open.	It	will	get	you	started	in	writing	your	first	few	applications,	and
give	you	a	sample	of	some	of	the	things	that	are	possible	with	NX	Open.	You	don’t	need	to	have	any	programming	experience	to	read	this	document,	but	we	assume	you	have	some	basic	knowledge	of	NX	and	Windows.	If	you	are	an	experienced	programmer,	the	only	benefits	of	this	document	will	be	the	descriptions	of	programming	techniques	specific
to	NX.	The	variant	of	NX	Open	that	we’re	describing	here	is	just	a	.NET	library,	so	it	can	be	used	with	any	.NET-compliant	language.	In	this	document,	we	focus	on	the	Visual	Basic	(VB)	language,	but	in	most	cases	it	will	be	obvious	how	to	apply	the	same	techniques	in	other	.NET	languages,	such	as	C#,	IronPython,	F#,	etc.	Other	versions	of	NX	Open
are	available	for	use	with	C++,	Java,	and	Python.	■	Where	To	Go	From	Here	The	next	two	chapters	show	you	how	to	write	programs	in	two	different	environments.	If	you	have	no	programming	experience,	you	won't	understand	much	of	the	code	you	see.	That’s	OK	—	the	purpose	of	these	two	chapters	is	to	teach	you	about	the	programming
environments	and	their	capabilities,	not	about	the	code.	Chapter	2	discusses	programming	using	the	NX	Journal	Editor.	The	only	real	advantage	of	this	environment	is	that	it	requires	no	setup	whatsoever	—	you	just	access	the	Journal	Editor	from	within	NX,	and	you	can	start	writing	code	immediately.	But,	by	the	time	you	reach	the	end	of	the
examples	in	chapter	2,	you	will	probably	be	growing	dissatisfied	with	the	Journal	Editor,	and	you	will	want	to	switch	to	a	true	“Integrated	Development	Environment”	(IDE)	like	Microsoft	Visual	Studio.	Chapter	3	discusses	Microsoft	Visual	Studio.	We	explain	how	to	download	and	install	a	free	version,	and	how	to	use	it	to	develop	NX	Open	programs.	If
you	have	some	programming	experience,	and	you	already	have	Visual	Studio	installed	on	your	computer,	you	might	want	to	skip	through	chapter	2	very	quickly,	and	jump	to	chapter	3.	Chapter	4	provides	a	very	quick	and	abbreviated	introduction	to	the	Visual	Basic	(VB)	programming	language.	A	huge	amount	of	material	is	omitted,	but	you	will	learn
enough	to	start	writing	NX	Open	programs	in	VB.	If	you	already	know	Visual	Basic,	or	you	have	a	good	book	on	the	subject,	you	can	skip	this	chapter	entirely.	Unrestricted	Getting	Started	with	NX	Open	Chapter	1:	Introduction	Page	1	In	Chapter	5,	we	provide	a	brief	overview	of	NX	Open	concepts	and	architecture.	It’s	not	really	necessary	for	you	to
know	all	of	this,	but	understanding	the	underlying	principles	might	help	you	to	learn	things	more	quickly.	Brief	descriptions	of	some	NX	Open	functions	are	given	in	chapters	6	through	15,	along	with	examples	of	their	uses.	We	focus	on	basic	techniques	and	concepts,	so	we	only	describe	a	small	subset	of	the	available	functions.	You	can	get	more
complete	information	from	the	NX	Open	Reference	Guide.	Chapter	16	discusses	“exceptions”,	and,	finally,	in	chapter	17,	we	tell	you	how	to	deal	with	some	common	problems,	if	they	should	arise.	■	Other	Documentation	The	definitive	source	of	information	about	the	capabilities	of	NX	Open	is	the	NX	Open	Reference	Guide,	which	you	can	find	in	the
NX	documentation	set	in	the	location	shown	below:	The	document	is	fully	indexed	and	searchable,	so	we	hope	you’ll	be	able	to	find	the	information	you	need.	It	describes	all	NX	Open	functions	in	detail.	If	you	get	tired	of	clicking	through	all	the	security	warnings	that	appear	when	you	access	the	NX	documentation,	you	can	fix	this.	In	Internet
Explorer,	choose	Tools		Internet	Options		Advanced.	Scroll	down	to	the	Security	set	of	options	near	the	bottom	of	the	list,	and	check	“Allow	active	content	to	run	in	files	on	My	Computer”.	In	Visual	Studio,	another	option	is	to	use	the	Object	Browser,	which	you	can	access	from	the	View	menu:	Unrestricted	Getting	Started	with	NX	Open	Chapter	1:
Introduction	Page	2	The	Object	Browser	won’t	let	you	see	the	example	programs	and	explanatory	remarks	that	are	in	the	Reference	Guide,	but	it	might	be	easier	to	access	while	you’re	in	the	middle	of	writing	some	code.	Actually,	you	may	find	that	you	don’t	need	either	the	NX	Open	Reference	Guide	or	the	Visual	Studio	Object	Browser,	because	all
the	information	you	need	about	calling	a	function	is	given	by	Visual	Studio	“intellisense”	as	you	type.	If	you	have	some	experience	with	the	GRIP	language,	then	there’s	a	document	called	“SNAP	and	NX	Open	for	GRIP	Enthusiasts”	that	might	be	helpful	to	you.	It	explains	SNAP	and	NX	Open	programming	in	terms	that	are	likely	to	be	familiar	to	people
who	have	used	GRIP,	and	shows	you	how	to	map	GRIP	functions	to	SNAP	and	NX	Open	ones.	You	can	find	that	document	in	the	standard	NX	documentation	set,	in	roughly	the	same	place	that	you	found	this	one.	■	Example	Code	Once	you	understand	the	basic	ideas	of	NX	Open,	you	may	find	that	code	examples	are	the	best	source	of	help.	You	can
find	example	programs	in	several	places:		In	this	guide.	There	are	about	a	dozen	example	programs	in	chapters	2	and	3,	along	with	quite	detailed	descriptions.	Also,	the	later	chapters	contain	many	“snippets”	of	code	illustrating	various	programming	techniques.		There	are	some	examples	in	[…NX]\UGOPEN\NXOpen\Examples.	There	are	two	folders:
the	one	called	“Getting	Started	Examples”	contains	the	examples	from	this	guide,	and	the	“More	Examples”	folder	contains	some	larger	examples	that	try	to	do	more	useful	things.	Here,	and	in	the	remainder	of	this	document,	the	symbol	[…NX]	denotes	the	folder	where	the	latest	release	of	NX	is	installed,	which	is	typically	C:\Program
Files\Siemens\NX	12,	or	something	similar.		The	GTAC	web	page	has	a	large	collection	of	example	programs	that	you	can	search	through	to	find	useful	code.	Log	in	with	your	webkey	username	and	password.	From	the	main	menu	choose	“Symptom/Solution	Information	Query”,	and	then	“Search	Solution	Center”.	Enter	a	search	string	that	includes	a
phrase	like	“sample	program”,	and	click	on	the	“Search”	button.	A	list	of	results	will	appear,	which	you	can	filter	by	document	type,	software	product,	and	publish	date.	Set	the	document	type	filter	to	“nx_api”	to	find	sample	programs,	and	filter	further	by	programming	language	if	you	want	to.	If	you’ve	read	everything,	and	you’re	still	stuck,	you	can
contact	Siemens	GTAC	support,	or	you	can	ask	questions	in	the	NX	Customization	and	Programming	Forum	at	the	Siemens	PLM	Community	site	.	Finally,	you	can	often	get	help	at	NXJournaling.com	and	in	the	NX	forum	at	eng-tips.com.	Unrestricted	Getting	Started	with	NX	Open	Chapter	1:	Introduction	Page	3	Chapter	2:	Using	the	NX	Journal	Editor
In	this	chapter,	we	will	discuss	creation	of	simple	programs	using	the	NX	Journal	Editor.	This	is	not	a	very	supportive	environment	in	which	to	write	code,	but	it’s	OK	for	very	simple	programs,	and	it	requires	no	setup.	In	the	next	chapter,	we	will	discuss	the	use	of	Microsoft	Visual	Studio,	instead.	This	requires	a	small	preparation	effort,	but	provides	a
much	nicer	development	environment.	■	System	Requirement	—	The	.NET	Framework	To	use	NX	Open	with	NX	12,	you	need	version	4.6	of	the	.NET	Framework,	or	newer.	It’s	possible	that	you	have	several	versions	installed	(which	is	quite	OK)	—	you	can	use	the	“Programs	and	Features”	Control	Panel	to	check:	If	you	don’t	have	version	4.6	or	later,
please	download	and	install	it	from	this	Microsoft	site.	■	Typographic	Conventions	In	any	document	about	programming,	it’s	important	to	distinguish	between	text	that	you’re	supposed	to	read	and	code	that	you’re	supposed	to	type	(which	the	compiler	will	read).	In	this	guide,	program	text	is	either	enclosed	in	yellowish	boxes,	as	you	see	on	the	next
page,	or	it’s	shown	in	this	blue	font.	References	to	filenames,	pathnames,	functions,	classes,	namespaces,	and	other	computerish	things	will	sometimes	be	written	in	this	green	color,	if	this	helps	clarify	an	explanation.	■	Licensing	You	don’t	require	any	special	license	to	record	.NET	journals	and	play	them	in	the	NX	Journal	Editor,	as	described	in	this
chapter.	Alternatively,	you	can	compile	your	journal	code	to	produce	an	“executable”	(an	EXE	or	DLL	file),	as	described	in	the	next	chapter.	Working	in	Journal	Editor	imposes	some	restrictions:	all	of	your	code	must	be	in	one	file,	and	you	can	only	call	functions	that	reside	in	a	small	set	of	special	libraries	(the	NX	Open	DLLs,	the	SNAP	DLL,	and	a	few
basic	Windows	DLLs).	If	the	restrictions	cause	trouble	for	you,	then	you	can	purchase	an	“author”	license	(dotnet_author)	that	makes	it	more	convenient	to	work	with	compiled	code.	Specifically,	the	author	license	allows	you	to:		Conveniently	write	large	compiled	programs	whose	code	is	distributed	across	several	files,	and	which	can	call	any	function
in	any	.NET	DLL.		“Sign”	the	compiled	programs	you	write	(so	that	other	people	can	run	them	more	easily)		Run	compiled	programs	that	call	NXOpen	functions,	even	if	they	have	not	been	signed	When	an	NX	Open	program	is	running,	it	consumes	licenses	in	the	same	way	as	an	interactive	NX	session.	So,	if	your	NX	Open	program	calls	some	drafting
function,	for	example,	then	it	will	consume	a	drafting	license.	Unrestricted	Getting	Started	with	NX	Open	Chapter	2:	Using	the	NX	Journal	Editor	Page	4	■	The	Guide	Functions	There	are	many	places	where	we	use	certain	“helper”	functions	to	make	the	example	code	in	this	document	shorter	and	easier	to	understand.	Since	their	only	purpose	is	to
improve	the	readability	of	this	guide,	we	call	these	functions	Guide	functions.	For	instance,	we	will	often	need	to	write	out	text	to	the	NX	Info	window.	Rather	than	repeating	the	three	of	four	lines	of	code	required	to	do	this,	we	have	captured	that	code	in	the	simple	Guide.InfoWriteLine	function.	This	function	is	used	in	the	first	example	below,	and	in
many	other	places.	The	Guide	functions	are	described	in	detail	in	an	Appendix,	and	in	the	NX	Open	Reference	Guide.	They	are	very	simple	and	limited,	because	our	primary	goal	was	to	make	them	easy	to	call.	Though	you	may	find	uses	for	them	in	the	code	you	write,	their	intended	purpose	is	purely	educational.	■	Example	1:	Hello	World	We	will	start
by	creating	a	journal	to	print	"Hello	World"	to	the	NX	Information	Window.	Run	NX,	create	a	new	part	file,	and	then	choose	the	Developer	tab.	If	you	do	not	see	the	Developer	tab	in	the	NX	Ribbon	bar,	please	activate	it	by	selecting	it	from	the	Ribbon	Bar	context	menu.	The	Developer	Tab	contains	several	groups	related	to	NX	programming,	including
the	Journal	Group.	The	Journal	Group	contains	commands	to	record,	play,	and	edit	journals,	as	well	as	some	commands	to	add	comments	or	code	to	a	journal	as	it	is	recorded.	Choose	Developer	tab	→	Journal	group	→	Edit.	In	the	Journal	Editor	dialog,	Click	Open	in	the	Journal	Editor	toolbar	and	open	the	file	NXOpenSample.vb,	which	you	can	find	in
[…NX]\UGOPEN\NXOpenExamples\VB\Templates	.	Remember	that	[…NX]	is	just	shorthand	for	the	location	where	NX	is	installed,	which	is	typically	somewhere	like	C:\Program	Files\Siemens\NX	12.	You	should	see	some	text	like	this:	This	journal	just	gets	the	NX	session.	Any	text	in	a	Visual	Basic	.NET	file	to	the	right	of	an	apostrophe	is	treated	as
comment	text	by	the	compiler.	Now	we	will	add	some	code	to	print	“Hello	World”	in	the	NX	Information	Window.	In	your	journal,	replace	the	line	of	text	that	says	'Your	code	goes	here	with	the	following	line:	Guide.InfoWriteLine("Hello,	World!")	Unrestricted	Getting	Started	with	NX	Open	Chapter	2:	Using	the	NX	Journal	Editor	Page	5	In	the	Journal
Editor,	click	Play,	(the	red	triangular	arrow	icon)	to	play	the	journal.	You	should	see	the	Information	Window	appear	containing	the	text	“Hello,	World!”.	If	you	receive	some	sort	of	error,	rather	than	the	output	shown	above,	here	are	some	possible	causes:		Maybe	you	typed	something	incorrectly,	in	which	case	the	compiler	will	probably	complain	that
it	can’t	understand	what	you	wrote.	An	error	message	will	tell	you	in	which	line	of	code	the	problem	occurred.	The	description	of	the	error	might	not	be	very	helpful,	but	the	line	number	should	be.		Maybe	you	don’t	have	an	up-to-date	version	of	the	.NET	framework	installed,	as	mentioned	above.	This	may	cause	a	mysterious	error	that	reports	an
“Invalid	attempt	to	load	library”.		Maybe	you	neglected	to	delete	the	quotation	mark	at	the	beginning	of	the	line	“Your	code	goes	here”,	in	which	case	your	code	will	run	without	any	errors,	but	the	NX	Information	window	will	not	appear	There	is	a	troubleshooting	guide	in	chapter	17	that	will	help	you	figure	out	what	went	wrong,	and	get	it	fixed.
Fortunately,	you	will	only	have	to	go	through	the	troubleshooting	exercise	once.	If	you	can	get	this	simple	“hello	world”	program	to	work,	then	all	the	later	examples	should	work	smoothly,	too.	■	Example	2:	Collections	NX	can	create	parts	and	assemblies	with	complex	geometry	and	product	structure.	Sometimes	you	will	need	to	perform	operations
on	a	collection	of	objects	in	your	parts	or	assemblies.	Using	a	journal	to	cycle	through	a	collection	will	often	make	these	tasks	easier.	We	will	start	by	creating	some	simple	journals	to	understand	how	to	cycle	though	object	collections.	An	NX	part	has	several	collections,	each	holding	objects	of	a	certain	type.	For	example,	each	part	has	a
CurveCollection	that	holds	all	the	curve	objects	in	that	part.	The	property	workPart.Curves	accesses	the	CurveCollection	of	the	work	part.	You	can	use	a	CurveCollection	to	cycle	over	all	types	of	curves	in	an	NX	part.	Choose	File	tab	→	Open	to	open	the	part	file	curves.prt,	which	you	can	find	in	[…NX]\UGOPEN\NXOpenExamples\ExampleParts.	This
part	file	contains	several	types	of	curves	(lines,	arcs,	general	conics,	and	splines)	that	we	can	cycle	through	to	understand	how	collections	work	in	NX	Open.	Open	the	file	NXOpenSample.vb	in	the	Journal	Editor,	just	like	the	steps	in	example	1.	Unrestricted	Getting	Started	with	NX	Open	Chapter	2:	Using	the	NX	Journal	Editor	Page	6	Imports	NXOpen
Module	NXJournal	Sub	Main	()	Dim	theSession	=	NXOpen.Session.GetSession()	'Your	code	goes	here	End	Sub	End	Module	Replace	the	comment	text	'Your	code	goes	here	with	the	following	lines:	Dim	workPart	=	theSession.Parts.Work	Dim	numCurves	As	Integer	=	0	Dim	curveLength	As	Double	For	Each	cur	As	curve	In	workPart.Curves	numCurves
=	numCurves	+	1	curveLength	=	cur.GetLength	Guide.InfoWriteLine("Curve	"	&	numCurves	&	"	has	length	"	&	curveLength)	Next	cur	Guide.InfoWriteLine("Work	part	has	"	&	numCurves	&	"	curves.")	You	can	print	information	about	each	of	the	curves	as	you	cycle	through	the	curve	collection.	The	Curve	class	has	a	method	GetLength	that	returns
the	length	of	the	curve.	This	code	is	cycling	through	the	curves	in	the	part	and	printing	the	length	of	each	curve	to	the	information	window.	Once	we	finish	cycling	through	the	curves,	we	also	print	out	the	number	of	curves	to	the	information	window.	The	meanings	of	the	more	interesting	lines	of	code	are	as	follows:	Lines	of	code	Explanation	Dim
workPart	=	theSession.Parts.Work	Declares	a	variable	"workPart"	and	initializes	it	to	the	work	part	of	the	current	NX	session.	Since	we	are	using	Option	Infer	On	in	our	journals,	we	do	not	have	to	declare	the	type	of	this	variable.	The	.NET	Framework	infers	its	type	from	the	return	type	of	the	property	theSession.Parts.Work.	For	Each	curve	In
workPart.Curves	Next	curve	This	is	a	repetitive	"loop"	process.	The	statements	between	the	"For"	statement	and	the	"Next	curve"	statement	are	executed	for	each	curve	in	workPart.Curves,	which	is	the	CurveCollection	of	the	work	part.	curveLength	=	curve.GetLength()	Get	the	length	of	the	curve	by	calling	the	GetLength	method	on	the	curve.
Guide.InfoWriteLine	("Work	part	has	"	&	numCurves	&	"	curves.")	Unrestricted	Getting	Started	with	NX	Open	Output	a	line	of	text	to	the	information	window.	The	"&"	character	takes	two	strings	and	combines	them	into	one.	The	Integer	variable	"numCurves"	is	converted	to	a	string	before	it	is	combined	with	the	other	strings.	Chapter	2:	Using	the
NX	Journal	Editor	Page	7	You	should	see	the	following	output	in	your	listing	window	if	you	used	the	curves.prt	part	file:	■	Example	3:	Creating	Simple	Geometry	Some	collections	have	additional	methods	to	create	objects.	A	CurveCollection	has	several	methods	for	creating	curves.	One	method,	CreateLine,	will	create	a	line	in	the	work	part	when	you
enter	the	start	point	and	end	point	for	the	line.	There	are	two	versions	of	the	CreateLine	method,	one	that	takes	two	point	objects	for	the	start	and	end	points	and	one	that	takes	two	sets	of	coordinates	for	the	start	and	end	points.	Create	a	new	part	in	NX,	and	then	open	the	file	NXOpenSample.vb	in	the	Journal	Editor	just	like	the	steps	in	example	1.
Replace	the	comment	text	'Your	code	goes	here	with	the	following	lines:	Dim	workPart	=	theSession.Parts.Work	Dim	p1	As	New	Point3d(50,	-100,	0)	Dim	p2	As	New	Point3d(50,	100,	0)	Dim	line1	=	workPart.Curves.CreateLine(p1,	p2)	Guide.InfoWriteLine("Line	created	with	length	"	&	line1.GetLength)	This	journal	creates	a	line	from	(50,	-100,	0)	to
(50,	100,	0)	with	a	length	of	200.	The	meanings	of	the	more	interesting	lines	of	code	are	as	follows:	Lines	of	code	Explanation	Dim	p1	As	New	Point3d(50,	-100,	0)	Declares	a	variable	"p1"	as	an	object	of	type	Point3d.	A	Point3d	is	a	structure	that	contains	three	double	values	named	"X",	"Y",	and	"Z"	representing	the	x,	y,	z	coordinates	of	the	point.	The
coordinates	are	initialized	to	the	values	(50,	-100,	0)	Dim	line1	=	workPart.Curves.CreateLine(p1,	p2)	Create	a	line	between	"p1"	and	"p2"	using	the	CreateLine	method	of	the	CurveCollection.	The	CurveCollection	of	a	part	is	represented	by	the	property	Curves.	You	can	use	journals	to	create	curves	programmatically	in	a	pattern	that	would	be	difficult
to	do	interactively	in	NX.	Unrestricted	Getting	Started	with	NX	Open	Chapter	2:	Using	the	NX	Journal	Editor	Page	8	For	example,	the	following	journal	creates	a	diagram	of	a	parabolic	mirror.	It	shows	how	rays	of	light	are	reflected	off	the	mirror	towards	a	focus	point.	Dim	Dim	Dim	Dim	Dim	workPart	=	theSession.Parts.Work	vertex	As	New
Point3d(0,0,0)	focus	As	New	Point3d(100,0,0)	axisX	As	New	Vector3d(1,0,0)	axisY	As	New	Vector3d(0,1,0)	Dim	focLength	=	focus.X	Dim	h	=	100.0	Dim	p1,	p2	As	Point3d	Dim	lens	=	workPart.Curves.CreateParabola(vertex,	axisX,	axisY,	focLength,	-h,	h)	For	y	=	-h	to	h	Step	10.0	Dim	x	=	(y*y)/(4.0*focLength)	p1	=	New	Point3d(x,y,0)	p2	=	New
Point3d(250,y,0)	workPart.Curves.CreateLine(focus,	p1)	workPart.Curves.CreateLine(p1,	p2)	Next	y	Running	this	code	should	produce	the	following	output:	■	Example	4:	Reading	Attributes	You	can	attach	attributes	to	any	NX	object	to	store	information	about	it.	Open	the	part	Bracket.prt,	which	you	can	find	in	[…
NX]\UGOPEN\NXOpenExamples/ExampleParts,	and	then	open	the	file	UserAttributesOnBodies.vb	in	the	Journal	Editor	just	like	the	steps	in	example	1.	Play	the	journal	to	see	what	it	does:	Dim	theSession	=	Session.GetSession()	Guide.InfoWriteLine("Outputting	list	of	attributes	in	each	body	in	the	work	part:")	Dim	bodies	=
theSession.Parts.Work.Bodies	For	Each	bod	As	body	in	bodies	Dim	attributes	=	bod.GetUserAttributes()	For	Each	attr	As	NXObject.AttributeInformation	in	attributes	Guide.InfoWriteLine(attr.Title	&	"	=	"	&	attr.StringValue)	Next	attr	Next	bod	Guide.InfoWriteLine("")	This	journal	cycles	through	the	bodies	in	the	work	part,	and	prints	all	the	attributes
on	each	body	to	the	Information	window.	Attributes	can	be	defined	to	be	certain	types,	such	as	Integer,	Number,	Time,	and	String,	but	you	will	always	be	able	to	get	a	string	representation	of	the	attribute	through	the	StringValue	property.	Unrestricted	Getting	Started	with	NX	Open	Chapter	2:	Using	the	NX	Journal	Editor	Page	9	The	meanings	of	the
more	interesting	lines	of	code	are	as	follows:	Lines	of	code	Explanation	Dim	bodies	=	theSession.Parts.Work.Bodies	Gets	the	BodyCollection	of	the	work	part.	Dim	attributes	=	bod.GetUserAttributes	Get	all	the	attributes	defined	on	the	body.	The	attributes	are	returned	in	an	array	of	AttributeInformation	structures.	Guide.InfoWriteLine(attribute.Title
&	"	=	"	&	attribute.StringValue)	Prints	out	the	attribute	title	and	string	value	of	the	attribute	to	the	information	window.	Running	this	code	on	Bracket.prt	should	produce	the	following	Information	window	output:	This	part	only	has	one	body,	so	the	listed	attributes	are	from	that	single	body.	Other	NX	objects	may	have	attributes	attached	to	them.
Open	the	journal	file	UserAttributesOnGeometry.vb	to	list	any	user	attributes	attached	to	bodies,	faces,	and	edges	in	the	work	part.	The	journal	looks	like	this:	Imports	NXOpen	Module	NXJournal	Sub	Main	()	Dim	theSession	=	Session.GetSession()	Guide.InfoWriteLine("Outputting	list	of	user	attributes	on	geometry	in	the	work	part:")	Dim	bodies	=
theSession.Parts.Work.Bodies	For	Each	bod	As	body	in	bodies	PrintAttributes(bod)	Dim	edges	=	bod.GetEdges()	For	Each	edg	As	edge	in	edges	PrintAttributes(edg)	Next	edg	Dim	faces	=	bod.GetFaces()	For	Each	f	As	face	in	faces	PrintAttributes(f)	Next	f	Next	bod	Guide.InfoWriteLine("")	End	Sub	Sub	PrintAttributes	(obj	As	NXObject)	Dim	attributes
=	obj.GetUserAttributes()	For	Each	attr	As	NXObject.AttributeInformation	in	attributes	Guide.InfoWriteLine(attr.Title	&	"	=	"	&	attr.StringValue)	Next	attr	End	Sub	End	Module	Unrestricted	Getting	Started	with	NX	Open	Chapter	2:	Using	the	NX	Journal	Editor	Page	10	The	code	that	prints	out	the	attributes	of	a	given	body	might	be	re-usable
elsewhere.	To	make	the	re-use	easier,	we	have	placed	this	code	in	a	new	“subroutine”,	(denoted	by	the	keyword	“Sub”).	We	call	this	subroutine	in	our	main	subroutine	when	we	want	to	print	out	the	attributes	for	any	NXObject;	in	our	case	bodies,	faces,	or	edges.	Running	this	code	on	Bracket.prt	should	produce	the	following	listing	window	output:	■
Example	5:	WinForms	(The	Hard	Way)	The	.NET	framework	provides	a	wide	variety	of	tools	for	designing	user	interface	dialogs.	These	dialogs	are	called	Windows	Forms	(WinForms,	for	short).	The	NX	Block	UI	Styler	has	similar	tools,	and	produces	dialogs	that	are	more	consistent	with	the	rest	of	NX,	as	explained	in	chapter	14.	But	WinForms	are
more	flexible,	and	you	may	find	them	useful	in	some	cases.	Designing	WinForm-based	user	interfaces	is	actually	much	easier	if	you	use	an	IDE	like	Visual	Studio,	and	we	will	see	how	to	do	this	in	the	next	chapter.	For	now,	we	will	create	a	very	simple	WinForm,	to	show	the	basic	concepts.	Copy	and	Paste	the	following	code	into	the	file
NXOpenSample.vb:	Sub	Main()	Dim	myForm	As	New	System.Windows.Forms.Form()	NXOpenUI.FormUtilities.SetApplicationIcon(myForm)	NXOpenUI.FormUtilities.ReparentForm(myForm)	myForm.BackColor	=	System.Drawing.Color.Red	myForm.Opacity	=	0.5	myForm.Text	=	"Hi	there"	myForm.ShowDialog()	End	Sub	Unrestricted	Getting	Started
with	NX	Open	'Create	a	Windows	form	'Use	an	NX	icon	for	the	application	icon	'Set	NX	as	the	parent	of	our	form	'Color	our	form	red	'Make	our	form	translucent	'Change	the	title	of	our	form	'Display	our	form	Chapter	2:	Using	the	NX	Journal	Editor	Page	11	When	you	run	this	application,	you	should	see	a	WinForm	appear,	like	this:	The	WinForm	is
pretty	boring,	but	it	does	have	all	the	standard	Windows	functionality	—	you	can	move	it	around,	resize	it,	minimize	it,	and	so	on,	in	the	usual	way.	The	code	calls	some	methods	in	a	special	FormUtilities	class	in	the	NXOpenUI	namespace	to	make	our	WinForm	a	bit	more	NX-specific.	The	method	SetApplicationIcon	creates	the	form	with	an	NX	icon	in
its	top	left	corner,	which	will	help	the	user	understand	that	it’s	associated	with	NX.	Also,	the	method	ReparentForm	sets	the	main	NX	Window	as	the	“parent”	of	our	new	form,	which	means	that	our	form	will	be	minimized	and	restored	along	with	the	NX	window,	and	will	never	get	hidden	underneath	it.	Actually,	in	the	current	scenario,	our	form	is
“modal”,	which	means	that	you	have	to	close	it	before	you	do	anything	with	the	NX	window,	so	the	parenting	arrangement	doesn’t	have	much	value.	We	got	this	modal	behavior	because	we	called	myForm.ShowDialog	to	display	our	form.	There	is	also	myForm.Show,	which	creates	a	non-modal	form,	but	this	doesn’t	work	in	the	Journal	Editor.	The	next
few	lines	of	code	adjust	various	properties	of	the	form	—	we	give	it	a	red	color,	make	it	50%	transparent,	and	put	the	words	“Hi	there”	in	its	title	bar.	There	are	dozens	of	properties	that	influence	the	appearance	and	behavior	of	a	WinForm,	but	it’s	best	to	wait	until	the	next	chapter	to	explore	these,	because	it’s	very	easy	using	Visual	Studio.	To	stop
your	code	running	and	get	back	to	the	Journal	Editor,	you	need	to	close	the	WinForm.	You	do	this	in	the	usual	way	—	click	on	the	“X”	in	the	top	right	corner.	Unrestricted	Getting	Started	with	NX	Open	Chapter	2:	Using	the	NX	Journal	Editor	Page	12	Next,	let’s	add	a	button	to	our	WinForm.	Modify	the	code	in	NXOpenSample.vb	as	follows:	Imports
NXOpen,	NXOpenUI	Imports	System,	System.Drawing.Color,	System.Windows.Forms	Module	NXOpenSample	Dim	WithEvents	myButton	As	Button	Dim	theSession	As	Session	Dim	rand	As	Random	'A	variable	to	hold	a	button	'A	variable	to	hold	the	NX	Session	'A	variable	to	hold	a	random	number	generator	Sub	Main()	theSession	=	Session.GetSession
rand	=	New	Random	Dim	myForm	As	New	Form	myForm.Text	=	"Create	Random	Spheres"	FormUtilities.SetApplicationIcon(myForm)	FormUtilities.ReparentForm(myForm)	myButton	=	New	Button	myButton.BackColor	=	Yellow	myButton.Text	=	"Click	me"	myForm.Controls.Add(myButton)	myForm.ShowDialog	End	Sub	'Get	the	NX	Session	'Create
a	random	number	generator	'Create	a	Windows	form	'Use	an	NX	icon	for	the	application	icon	'Set	NX	as	the	parent	of	our	form	'Create	a	button	'Color	it	yellow	'Put	some	text	on	it	'Add	it	to	our	form	'Display	our	form	End	Module	First,	note	that	we	have	added	another	line	of	“Imports”	statements	at	the	top	of	the	file.	These	allow	us	to	abbreviate	the
names	in	our	code.	So,	for	example,	we	can	refer	to	Yellow	instead	of	the	full	name	System.Drawing.Color.Yellow,	and	we	can	refer	to	Random	instead	of	System.Random.	As	you	can	see,	we	used	the	“New”	keyword	when	creating	the	random	number	generator,	the	form,	and	the	button.	We	didn’t	use	the	“New”	when	we	created	NX	line	objects	in
earlier	examples,	and	you	may	be	wondering	why	these	two	types	of	objects	get	treated	differently.	The	answer	is	given	in	chapter	5,	in	the	section	entitled	“Factory	Objects”.	Don’t	worry	about	it	for	now	—	just	accept	that	the	“New”	keyword	isn’t	needed	when	you’re	creating	NX	objects.	Or,	if	the	curiosity	is	overwhelming,	you	can	read	about	this
topic	in	chapter	5.	Try	running	this	code.	You	will	see	that	the	form	is	displayed,	but	nothing	happens	if	you	click	on	the	yellow	button.	To	change	this,	place	the	following	code	down	near	the	bottom,	just	before	the	line	that	says	“End	Module”.	Sub	Handler(sender	As	Object,	e	As	EventArgs)	Handles	myButton.Click	Dim	x	=	100	*	rand.NextDouble
'Get	a	random	x-coordinate	between	0	and	100	Dim	y	=	100	*	rand.NextDouble	'Get	a	random	y-coordinate	between	0	and	100	Dim	z	=	100	*	rand.NextDouble	'Get	a	random	z-coordinate	between	0	and	100	Guide.CreateSphere(x,	y,	z,	10)	'Create	a	sphere	at	(x,y,z)	with	diameter	10	End	Sub	This	is	a	new	“subroutine”	(denoted	by	the	keyword	“Sub”).
So,	as	in	the	previous	example,	we	now	we	have	two	subroutines	—	one	called	“Main”	and	one	called	“Handler”.	This	is	a	fairly	typical	situation	—	as	your	code	gets	longer,	it’s	easier	to	understand	if	you	break	it	up	into	several	subroutines.	The	“Handler”	function	is	an	event	handler	for	the	“click”	event	of	the	yellow	button.	In	other	words,	this	code
gets	executed	whenever	you	click	on	the	yellow	button	in	the	form.	As	you	can	see,	every	time	you	click	the	button,	the	code	will	create	a	randomly-located	sphere.	The	completed	sample	is	in	the	file	CreateRandomSpheres.vb	Unrestricted	Getting	Started	with	NX	Open	Chapter	2:	Using	the	NX	Journal	Editor	Page	13	Designing	buttons	and	writing
event	handlers	is	much	easier	in	Visual	Studio,	as	we	will	see	in	the	next	chapter.	■	What	Next?	The	examples	in	this	chapter	have	given	you	a	brief	glimpse	at	some	of	the	things	you	can	do	with	NX	Open.	Using	the	Journal	Editor,	we	were	able	to	start	programming	immediately,	and	we	saw	that	NX	Open	allows	us	to	build	simple	user	interfaces,	do
calculations,	and	create	NX	geometry.	If	you	liked	what	you	saw	in	this	chapter,	you’ll	probably	like	the	next	one,	too.	It	shows	you	some	further	examples	of	NX	Open	capabilities,	and	also	some	much	easier	and	more	pleasant	ways	to	write	code.	Unrestricted	Getting	Started	with	NX	Open	Chapter	2:	Using	the	NX	Journal	Editor	Page	14	Chapter	3:
Using	Visual	Studio	Express	In	the	previous	chapter,	we	developed	code	using	the	NX	Journal	Editor.	This	is	a	convenient	starting	point,	since	it	requires	no	setup,	but	it	is	really	a	fairly	primitive	environment.	Except	for	very	short	programs,	it	is	far	better	to	use	a	more	powerful	“integrated	development	environment”	(IDE).	Microsoft	Visual	Studio
Express	2015	for	Windows	Desktop	is	a	free-ware	lightweight	version	of	the	Microsoft	Visual	Studio	IDE	used	by	many	professional	programmers.	The	idea,	according	to	Microsoft,	is	to	provide	a	streamlined,	easy-to-use	IDE	for	less	serious	users,	such	as	hobbyists,	students,	and	people	like	you.	You	can	use	this	“Express”	version	of	Visual	Studio	with
the	Visual	Basic,	C#,	and	C++	programming	languages.	In	this	chapter,	we	will	be	focusing	on	using	Visual	Basic.	NOTE:	It	should	be	noted	that	the	NXOpen	Wizards	provided	by	NX	will	not	work	with	Visual	Studio	Express.	■	Installing	Visual	Studio	If	you	already	have	some	version	of	Visual	Studio	2015	installed	on	your	computer,	and	you	are
familiar	with	it,	you	can	skip	this	section	and	proceed	directly	to	the	first	example.	If	not,	then	the	first	step	is	to	install	Visual	Studio	2015	Express	for	Windows	Desktop,	which	you	can	download	from	here,	or	several	other	places.	If	you	can’t	find	the	web	page	(because	the	Microsoft	folks	have	moved	it	again),	just	search	the	internet	for	“Visual
Studio	2015	Express”.	Make	sure	you	get	the	“for	Windows	Desktop”	version.	A	common	mistake	is	to	download	the	“for	Windows”	version,	instead,	but	this	is	for	building	Windows	store	apps,	so	it’s	not	what	we	want.	After	selecting	download,	choose	the	executable	downloaded,	click	next,	and	follow	the	installation	instructions	in	order	to	complete
the	installation.	After	you’re	done,	you	should	see	Microsoft	Visual	Studio	2015	Express	on	your	Programs	menu,	and	you	should	see	a	folder	called	Visual	Studio	2015	in	your	My	Documents	folder.	If	you	run	into	trouble,	it	might	help	to	watch	this	video.	Older	versions	of	Visual	Studio	will	not	work	because	they	don’t	allow	you	to	use	version	4.6	of
the	.NET	Framework.	Unfortunately,	the	Visual	Studio	Express	download	is	much	larger	than	it	was	when	it	was	first	released	—	it	has	grown	from	around	80	MB	to	over	1.1	GB.	If	you	don’t	have	the	patience	or	disk	space	to	handle	a	package	this	large,	you	can	try	the	SharpDevelop	IDE,	instead.	It’s	only	around	15MB,	and	provides	everything	you
need.	The	instructions	you	read	in	this	document	won’t	match	SharpDevelop	exactly,	but	it	should	be	fairly	easy	to	adapt.	In	the	examples	in	this	chapter,	we’ll	provide	step-by-step	instructions	for	writing	the	code,	just	as	we	did	in	chapter	2,	so	it	should	be	easy	to	follow.	But	if	you’d	like	to	get	some	additional	information	about	the	Visual	Basic
language	or	Visual	Studio,	then	one	good	place	to	start	is	this	series	of	videos.	There	is	a	huge	amount	of	other	tutorial	material	available	on	the	internet,	and	you	might	find	other	sources	preferable,	especially	if	your	native	language	is	not	English.	Unrestricted	Getting	Started	with	NX	Open	Chapter	3:	Using	Visual	Studio	Express	Page	15	■
Installing	NX	Open	Templates	After	installing	Visual	Studio,	you	should	install	two	custom	templates	that	we	will	be	using	as	convenient	starting	points	when	developing	NX	Open	programs.	You	will	find	two	zip	files	in	[…NX]\UGOPEN\NXOpenExamples\VB\Templates.	Again,	remember	that	[…NX]	is	just	shorthand	for	the	location	where	NX	is
installed,	which	is	typically	somewhere	like	C:\Program	Files\Siemens\NX	12.	The	names	of	the	files	are	NXOpenTemplateVB.zip	and	NXOpenWinFormTemplateVB.zip.	Copy	these	two	zip	files	into	the	folder	[My	Documents]\Visual	Studio	2015\Templates\ProjectTemplates\Visual	Basic.	For	added	clarity,	here	are	the	same	instructions	in	pictorial
form:	Unfortunately,	experience	has	shown	that	people	often	do	this	step	wrong,	so	we’re	going	to	yell	at	you...	NOTE:	please	do	not	extract	the	contents	from	the	zip	files;	just	copy	the	zip	files	themselves.	NOTE:	please	note	that	the	NX	Open	Templates	are	different	than	the	NX	Wizards.	The	NX	Templates	will	work	with	both	Visual	Studio	and
Visual	Studio	Express.	While	the	NXOpen	Wizards	will	only	work	with	the	Visual	Studio.	For	more	information	about	the	NX	Open	Wizards	please	see	the	Programming	Tools	section	of	the	Technical	Documents.	■	Licensing	Issues	Again	You	will	need	an	NX	Open	.Net	Author	license	to	run	NX	Open	dlls	built	from	Visual	Studio.	If	you	do	not	have	an
NX	Open	.Net	Author	license,	you	can	edit	NX	Open	Visual	Basic	journals	in	Visual	Studio	and	replay	the	journal	in	NX	as	long	as	the	journal	is	arranged	to	be	in	one	file.	■	Example	1:	Hello	World	Again	Our	first	exercise	is	to	create	a	“Hello	World”	application	again.	Sorry,	we	know	it’s	boring,	but	it’s	a	tradition.	After	you	get	Visual	Studio	Express
installed	and	running,	choose	New	Project	from	the	File	menu.	A	“project”	is	the	name	Visual	Studio	uses	for	a	collection	of	related	files.	You	will	see	a	list	of	available	project	templates	Unrestricted	Getting	Started	with	NX	Open	Chapter	3:	Using	Visual	Studio	Express	Page	16	Choose	the	“NX	Open	Application”	template.	This	is	a	special	custom
template	designed	to	serve	as	a	convenient	starting	point	for	certain	kinds	of	NX	Open	applications.	Also,	give	your	project	a	suitable	name	—	something	like	“HelloApp”	would	be	good.	The	NX	Open	Application	template	gives	you	a	framework	for	a	simple	NX	Open	application,	as	shown	here:	In	the	left-hand	pane,	you	can	see	some	familiar	VB	code,
which	the	template	has	placed	in	a	file	called	MyProgram.vb	for	you.	We	need	to	make	a	couple	of	changes	to	this	code:	add	Option	Explicit	Off	at	the	top,	and	add	a	line	that	outputs	some	message	to	the	Information	window,	as	shown	here:	You	should	type	the	new	code,	rather	than	just	copying	and	pasting	it,	because	some	interesting	things	happen
as	you	type	(as	you	saw	in	the	tutorial	videos,	if	you	watched	them).	In	fact,	it’s	interesting	to	type	the	entire	7	lines	of	code.	You	will	find	that	you	actually	only	have	to	type	5	lines	—	Visual	Studio	will	type	the	other	two	for	you.	Generally,	Visual	Studio	helps	you	by	suggesting	alternatives,	completing	words,	correcting	mistakes,	showing	you
documentation,	and	so	on.	To	accept	the	highlighted	alternative,	you	can	either	press	Tab,	or	type	another	character,	like	a	period	or	a	parenthesis.	All	of	this	is	called	“Intellisense”	by	Microsoft’s	marketeers.	Despite	its	dubious	name,	you’ll	find	it	very	helpful	as	your	programming	activities	progress.	Also,	notice	that	Visual	Studio	automatically
makes	comments	green,	literal	text	red,	and	language	keywords	blue,	to	help	you	distinguish	them.	Next,	you	are	ready	to	compile	(or	“build”)	your	code	into	an	executable	application.	To	do	this,	go	to	the	Build	menu	and	choose	Build	HelloApp,	or	press	Ctrl+Shift+B,	which	will	send	your	code	to	the	VB	compiler.	The	compiler	will	translate	your
code	into	an	executable	form	that	your	computer	can	run,	and	will	store	this	in	a	file	called	HelloApp.dll.	The	extension	“dll”	stands	for	“Dynamic	Link	Library”,	which	is	a	type	of	file	that	holds	executable	code.	You	should	get	the	good	news	about	the	build	succeeding	down	at	the	bottom	left:	Unrestricted	Getting	Started	with	NX	Open	Chapter	3:
Using	Visual	Studio	Express	Page	17	On	the	other	hand,	if	you’re	unlucky,	you	might	get	some	error	messages	like	these:	It’s	not	very	likely	that	this	problem	will	occur,	so	we	don’t	want	to	interrupt	the	flow	by	discussing	all	the	details	here.	The	possible	causes	and	corrective	actions	are	described	in	chapter	17.	At	some	point,	you	should	save	your
project	by	choosing	Save	All	from	the	File	menu.	Visual	Studio	will	offer	to	save	in	your	Projects	folder,	whose	path	is	typically	something	like	[My	Documents]\Visual	Studio	2015\Projects.	Now,	we	are	ready	to	run	our	new	application.	From	within	NX,	choose	File		Execute		NX	Open	(or	press	Ctrl+U).	Your	version	of	the	NX	user	interface	might	not
have	the	Execute	option	installed	in	the	File	menu,	but	the	Ctrl+U	shortcut	will	work	anyway.	A	dialog	will	appear	that	allows	you	to	find	your	executable.	As	mentioned	earlier,	it	will	be	called	HelloApp.dll,	and	it	will	be	located	in	[My	Documents]\Visual	Studio	2015\Projects\HelloApp\HelloApp\bin\Debug	along	with	two	other	files	that	you	don’t	need
to	worry	about.	To	see	HelloApp.dll,	make	sure	you	set	the	“Files	of	type”	filter	in	the	NX	dialog	to	“Dynamic	Loadable	Libraries	(*.dll)”.	Double-click	on	HelloApp.dll,	and	a	friendly	greeting	should	appear	in	your	NX	Listing	window.	If	you	can’t	find	your	application,	try	looking	in	the	bin\Release	folder,	rather	than	the	bin\Debug	folder.	If	you	still
can’t	find	it,	it’s	probably	because	you	forgot	to	save	it,	or	you	didn’t	set	the	file	type	filter	correctly.	There’s	a	useful	trick	that	allows	you	to	locate	your	executable	quickly.	When	you	build	the	application,	some	text	like	this	will	appear	in	the	“Output”	pane	at	the	bottom	of	your	Visual	Studio	window:	If	the	output	pane	is	not	visible,	press	Ctrl+Alt+O
to	display	it	(that’s	the	letter	O,	not	the	number	zero).	You	can	then	just	copy	the	pathname	of	the	newly-created	application	(highlighted	in	yellow	above)	and	paste	it	into	the	“Execute”	dialog	within	NX.	This	technique	is	highly	recommended	—	it	avoids	all	the	hunting	around	folders	that	we	described	above,	and	it	ensures	that	you	are	running	the
code	that	you	just	built.	You	only	have	to	do	this	once	per	NX	session,	because	NX	will	remember	the	location	for	you.	Unrestricted	Getting	Started	with	NX	Open	Chapter	3:	Using	Visual	Studio	Express	Page	18	■	Example	2:	Declaring	Variables	In	this	example,	we	will	do	some	vector	calculations	to	compute	the	radius	of	a	circle	through	three
points.	We	will	focus	on	the	topic	of	“declaring”	the	variables	we	use,	to	see	how	this	affects	things.	If	your	previous	project	is	still	open	in	Visual	Studio,	close	it	by	choosing	File		Close	Project.	Then	choose	New	Project	from	the	File	menu,	use	the	NX	Open	Application	template	to	create	a	project,	and	give	it	the	name	ThreePointRadius,	or	something
like	that.	As	before,	add	the	line	Option	Explicit	Off	at	the	top	of	the	file.	For	reasons	explained	below,	this	is	the	last	time	we’re	going	to	do	this	in	our	examples.	Then,	replace	the	line	“Your	code	goes	here”	with	the	following:	Dim	sel	=	NXOpen.UI.GetUI.SelectionManager	Dim	myView	As	View	Dim	p1,	p2,	p3	As	Point3d
sel.SelectScreenPosition("Specify	first	point",	myView,	p1)	'	Get	first	point	from	user	sel.SelectScreenPosition("Specify	second	point",	myView,	p2)	'	Get	second	point	sel.SelectScreenPosition("Specify	third	point",	myView,	p3)	'	Get	third	point	u	As	New	Vector3d(p2.X	-	p1.X,	p2.Y	-	p1.Y,	v	As	New	Vector3d(p3.X	-	p1.X,	p3.Y	-	p1.Y,	uu	=	u.X	*	u.X	+	u.Y
*	u.Y	+	u.Z	*	u.Z	uv	=	u.X	*	v.X	+	u.Y	*	v.Y	+	u.Z	*	v.Z	vv	=	v.X	*	v.X	+	v.Y	*	v.Y	+	v.Z	*	v.Z	det	=	uu	*	vv	-	uv	*	uv	alpha	=	(uu	*	vv	-	uv	*	vv)	/	(2	*	det)	beta	=	(uu	*	vv	-	uu	*	uv)	/	(2	*	det)	rx	=	alpha	*	u.X	+	beta	*	v.X	ry	=	alpha	*	u.Y	+	beta	*	v.Y	rz	=	alpha	*	u.Z	+	beta	*	v.Z	radius	=	Math.Sqrt(rx*rx	+	ry*ry	+	rz*rz)	p2.Z	-	p1.Z)	'	Vector3d	from	p1	to	p2
p3.Z	-	p1.Z)	'	Vector3d	from	p1	to	p3	'	Dot	product	of	vectors	'	Determinant	for	solving	linear	equations	'	Bad	code	!!	Should	check	that	det	is	not	zero	Guide.InfoWriteLine(radius)	'	Output	to	Info	window	'	Radius	vector	components	'	Radius	is	length	(norm)	of	this	vector	Again,	you	can	gain	some	experience	with	Intellisense	if	you	type	this	code,
rather	than	copying	and	pasting	it.	The	only	thing	that’s	new	here	is	the	function	SelectScreenPosition,	which	allows	you	to	get	a	screen	point	location	from	the	user.	As	before,	you	can	save	this	project,	build	it,	and	run	it	from	within	NX	using	File		Execute		NX	Open	(or	Ctrl+U).	Now	let’s	see	what	happens	if	you	make	a	typing	error.	Change	the	line
that	calculates	“det”	to	read	det	=	uu	*	vv	-	uv	*	u	In	other	words,	change	the	last	term	from	“uv”	to	“u”.	Then	build	the	project	and	try	running	it	again.	It	will	still	build	successfully,	but	when	you	run	it	from	within	NX,	you’ll	get	an	error	message	like	this:	If	you	choose	Help		Log	File	from	within	NX,	and	hunt	around	the	NX	System	Log,	you	will	find
some	more	error	messages	about	50	lines	from	the	bottom,	most	notably	these	ones	Caught	exception	while	running:	Main	System.InvalidCastException:	Operator	'*'	is	not	defined	for	type	'Double'	and	type	'Vector3d'.	at	Microsoft.VisualBasic.CompilerServices.Operators.InvokeObjectUserDefinedOperator	…	blah	blah	blah	at
Microsoft.VisualBasic.CompilerServices.Operators.MultiplyObject(Object	Left,	Object	Right)	at	ThreePointRadius.ThreePointRadius.Main()	in	C:\Users\	…	\ThreePointRadius.vb:line	21	Unrestricted	Getting	Started	with	NX	Open	Chapter	3:	Using	Visual	Studio	Express	Page	19	Obviously	it	would	be	much	better	to	discover	errors	like	this	earlier,	as
you’re	writing	the	code,	rather	than	when	you	run	the	application.	And,	in	fact,	you	can,	if	you	change	the	way	you	write	the	code,	and	give	the	compiler	a	little	more	information.	The	key	is	a	process	called	“declaring”	variables,	which	lets	us	tell	the	compiler	about	their	types.	To	see	how	this	works,	change	your	code	to	read:	Dim	Dim	Dim	Dim	Dim	u
As	New	Vector3d(p2.X	v	As	New	Vector3d(p3.X	uu	As	Double	=	u.X	*	u.X	uv	As	Double	=	u.X	*	v.X	vv	As	Double	=	v.X	*	v.X	p1.X,	p1.X,	+	u.Y	+	u.Y	+	v.Y	p2.Y	-	p1.Y,	p2.Z	-	p1.Z)	p3.Y	-	p1.Y,	p3.Z	-	p1.Z)	*	u.Y	+	u.Z	*	u.Z	*	v.Y	+	u.Z	*	v.Z	*	v.Y	+	v.Z	*	v.Z	The	phrase	“Dim	u	As	New	Vector3d”	tells	the	compiler	that	the	variable	u	is	supposed	to	hold	a
Vector3d	object,	and	so	on.	So,	the	compiler	now	knows	that	u	and	v	are	vectors,	and	uu,	uv,	and	vv	are	numbers	(doubles).	So	the	expression	uv*u	is	trying	to	multiply	a	vector	by	a	number,	which	is	not	a	legal	operation	in	this	context.	So	we	get	a	“squiggly	underline”	error	indicator,	and	we	know	immediately	that	we	have	made	a	mistake.	And,	if
you	hover	your	mouse	over	the	mistake,	a	message	will	appear	telling	you	what	you	did	wrong:	Up	until	now,	our	applications	have	been	very	simple,	so	there	was	not	much	justification	for	the	extra	effort	of	declaring	variables.	But,	as	you	start	to	write	more	complex	applications,	you	will	definitely	want	the	compiler	to	help	you	find	your	mistakes.
And	it	can	do	this	very	effectively	if	you	declare	your	variables.	Actually,	many	programming	languages	require	you	to	declare	all	variables.	Visual	Basic	is	an	exception	—	if	you	use	the	“Option	Explicit	Off”	directive	at	the	start	of	your	code,	as	we	have	been	doing,	then	you	don’t	have	to.	But	declaring	variables	is	a	good	thing,	so	we’re	going	to	do	it

from	now	on.	For	further	discussion	of	declaring	variables	(and	avoiding	or	shortening	declarations),	please	see	chapter	4.	■	Example	3:	WinForms	Again	One	of	the	nice	things	about	Visual	Studio	is	the	set	of	tools	it	provides	for	designing	user	interface	dialogs	using	Windows	Forms	(WinForms,	for	short).	We’re	going	to	recreate	the	“Create
Random	Spheres”	dialog	from	the	previous	chapter,	but	it	will	be	much	easier	this	time,	using	Visual	Studio,	and	the	dialog	will	look	nicer.	Run	Visual	Studio	Express,	and	choose	New	Project	from	the	File	menu.	Instead	of	choosing	the	NX	Open	Application	template,	chose	the	NX	Open	WinForm	Application	template	this	time.	Call	your	new	project
NXOpenWinFormApp.	Your	new	project	will	look	something	like	this:	Unrestricted	Getting	Started	with	NX	Open	Chapter	3:	Using	Visual	Studio	Express	Page	20	You	may	need	to	double-click	on	NXOpenWinForm.vb	to	see	the	new	Windows	form	in	the	left-hand	pane.	In	the	lower	right-hand	pane,	all	the	“properties”	of	the	new	WinForm	are	listed,
along	with	their	values.	As	you	can	see,	the	form	has	a	property	called	“Text”,	and	this	property	currently	has	the	value	“NX	Open	WinForm”.	This	property	actually	represents	the	text	in	the	title	bar	of	the	dialog.	Edit	this	text	to	read	“Create	Sphere”.	When	you	do	this,	you	will	see	that	the	dialog	title	bar	changes,	too.	Next,	as	before,	we’re	going	to
add	a	button	to	our	form.	On	the	left-hand	side	of	the	Visual	Studio	window,	you	should	see	a	Toolbox	containing	various	types	of	user	interface	objects.	If	you	don’t	see	the	Toolbox,	choose	it	from	the	View	menu,	or	press	Ctrl+Alt+X.	Click	on	the	“Button”	object.	The	cursor	will	change	to	a	small	“+”	sign,	and	you	can	then	use	it	to	graphically	draw	a
button	on	the	form.	Initially,	the	button	will	be	labeled	with	the	text	“Button1”,	but	you	can	change	this	to	“Click	me”	or	whatever	you	want	by	editing	the	text	property	of	the	button,	just	as	we	edited	the	text	property	of	the	form.	You	can	edit	other	properties	of	the	button,	too,	like	the	font	used	and	the	background	color.	Your	result	might	be
something	like	this:	Also,	you	can	adjust	the	sizes	of	the	button	and	the	form	by	dragging	on	their	handles:	Next,	let’s	make	the	button	do	something	useful.	Double-click	the	button,	and	a	code	window	will	appear,	like	this:	Imports	NXOpen	Public	Class	NXOpenWinForm	Private	Sub	Button1_Click(sender	As	System.Object,	e	As	System.EventArgs)
Handles	Button1.Click	End	Sub	End	Class	Unrestricted	Getting	Started	with	NX	Open	Chapter	3:	Using	Visual	Studio	Express	Page	21	The	function	you	see	is	an	event	handler	for	the	button’s	“click”	event.	Currently,	it	doesn’t	do	anything,	but	you	can	edit	it	as	shown	below	to	make	the	click	event	create	a	sphere,	or	whatever	else	you	want	it	to	do.
Private	Sub	Button1_Click(sender	As	System.Object,	e	As	System.EventArgs)	Handles	Button1.Click	Guide.InfoWriteLine("Creating	a	sphere")	Guide.CreateSphere(0,	0,	0,	10)	End	Sub	When	we	created	this	dialog	manually,	in	the	previous	chapter,	you	may	recall	that	we	wrote	code	like	this:	myForm.Text	=	"Create	Random	Spheres"	myButton	=
New	Button	myButton.BackColor	=	Color.Yellow	myButton.Text	=	"Click	me"	myForm.Controls.Add(myButton)	'Create	a	button	'Color	it	yellow	'Put	some	text	on	it	'Add	it	to	our	form	This	same	sort	of	code	exists	in	our	current	project,	too,	but	it	was	written	for	us	by	Visual	Studio,	and	it’s	somewhat	hidden,	because	you’re	not	supposed	to	edit	it.	To
see	this	code,	click	on	the	Show	All	Files	button	at	the	top	of	the	Solution	Explorer	window,	and	then	double-click	on	the	file	named	NXOpenWinForm.Designer.vb.	To	display	our	dialog,	we	have	a	couple	of	lines	of	code	in	Sub	Main	in	the	file	MyProgram.vb:	Public	Shared	Sub	Main()	Dim	form	As	New	NXOpenWinForm()	form.ShowDialog()	End	Sub
As	before,	we’re	using	form.ShowDialog	to	display	the	dialog,	so	it	will	be	“modal”,	which	means	that	we	can’t	do	anything	else	until	we	close	the	form.	There	is	also	myForm.Show,	which	creates	a	non-modal	form,	but	to	use	this,	you	have	to	change	the	GetUnloadOption	function	in	the	file	Unload.vb.	Specifically,	you	have	to	modify	this	function	to
return	NXOpen.UnloadOption.AtTermination	instead	of	NXOpen.UnloadOption.Immediately.	If	you	fail	to	do	this,	your	dialog	will	disappear	a	second	or	two	after	it’s	displayed,	so	you’ll	probably	never	see	it.	Build	the	project,	and	run	it	from	within	NX,	as	usual.	When	your	dialog	appears,	you	can	click	on	your	button	to	create	spheres.	When	you	get
bored	with	this,	click	the	“X”	to	close	your	dialog.	If	you	want	to	learn	more	about	creation	of	WinForm-based	user	interfaces,	there	are	many	books	and	on-line	tutorials	available	on	the	subject,	including	this	tutorial.	■	Example	4:	Hello	World	Yet	Again	(the	Hard	Way)	Sorry,	but	we’re	going	to	create	a	“Hello	World”	application	yet	again.	This	time,
we’re	going	to	do	it	without	getting	any	assistance	from	the	NX	Open	template	we	used	last	time.	This	will	help	you	understand	what	is	happening	Unrestricted	Getting	Started	with	NX	Open	Chapter	3:	Using	Visual	Studio	Express	Page	22	“behind	the	scenes”	so	that	you	will	know	what	to	do	if	you	run	into	problems	later.	If	you’re	not	interested	in
this,	you	can	skip	to	the	next	example.	Run	Visual	Studio	Express,	and	choose	New	Project	from	the	File	menu.	You	will	see	the	available	set	of	project	templates.	But,	this	time,	instead	of	choosing	the	NX	Open	Application	template,	choose	the	Class	Library	one:	You	might	be	thinking	that	you	could	use	the	“Console	Application”	template,	instead.
Unfortunately,	there	are	some	technical	reasons	why	this	will	not	work	—	on	some	systems,	it	will	lead	to	a	mysterious	“failed	to	load	image”	error	when	you	try	to	run	your	application	from	within	NX.	Please	see	chapter	17	for	more	details.	This	Class	Library	template	gives	you	a	framework	for	a	Visual	Basic	class	definition.	You	will	see	a	file	called
Class1.vb	that	contains	a	couple	of	lines	of	code.	Delete	this	code	and	paste	(or	type)	the	contents	of	NXOpenSample.vb	in	its	place.	Delete	the	first	line	(the	one	that	says	Option	Explicit	Off).	Also,	delete	the	line	that	says	Your	code	goes	here,	and	replace	it	by	Guide.InfoWriteLine("Hello	world!"),	as	we	have	done	several	times	before.	You	should	end
up	with	something	that	looks	like	this:	As	you’re	typing,	you	might	notice	that	the	usual	“Intellisense”	doesn’t	work.	This	is	the	first	indication	that	something	is	wrong.	Also,	you	will	see	several	squiggly	underlines,	and	some	error	and	warning	messages	in	the	list	at	the	bottom	of	the	window:	Most	of	the	problems	arise	because	our	code	is	using	the
NXOpen	libraries,	and	these	are	not	connected	in	any	way	to	our	current	project.	So	the	compiler	doesn’t	know	anything	about	NX	Open,	or	the	NXOpen.Guide.InfoWriteLine	Unrestricted	Getting	Started	with	NX	Open	Chapter	3:	Using	Visual	Studio	Express	Page	23	function.	To	fix	this,	we	need	to	add	a	“reference”	to	the	NXOpen	libraries.	From	the
Project	menu,	choose	Add	Reference.	In	the	dialog	that	appears,	click	on	the	Browse	tab,	and	navigate	to	the	folder	[…NX]\NXBIN\managed:	You	will	see	a	number	of	DLLs.	We	only	need	the	NX	Open	DLLs	in	this	example.	Select	five	DLLs,	as	shown	above,	and	click	OK.	Your	project	now	has	references	to	the	NX	Open	libraries,	and	this	should
remove	the	complaints	about	them	“containing	no	public	members”.	Now	you	can	build	and	run	the	application,	as	usual.	The	NX	Open	Application	template	that	we	used	previously	already	includes	the	references	to	the	NX	Open	libraries,	so	you	didn’t	have	to	add	them	manually.	But,	it’s	useful	to	know	how	to	do	this	when	you	need	to.	For	example,
if	you	want	to	use	some	.NET	Framework	functions	in	any	journals	you	write,	you	may	have	to	add	references	to	the	assemblies	where	they	reside.	If	you	forget	to	do	this,	you	will	get	“type	not	defined”	errors,	like	the	ones	we	saw	above.	Please	see	chapter	17	for	more	information	about	problems	with	references.	A	project	based	on	the	Class	Library
template	has	another	deficiency	—	it	doesn’t	include	a	GetUnloadOption	function.	This	means	that	NX	won’t	know	how	to	“unload”	your	code	after	it	has	finished	executing	—	in	some	sense,	NX	“holds	onto”	your	code,	and	won’t	let	it	go.	So,	if	you	try	to	change	your	code	and	rebuild	the	project,	you’ll	get	an	error	message	telling	you	that	you	“can’t
access	the	file	because	it	is	being	used	by	another	process”.	The	other	process	is	NX,	and	you’ll	have	to	terminate	NX	to	get	it	to	release	its	hold	on	your	DLL	so	that	you	can	rebuild	it.	The	NX	Open	Application	Template	provides	a	GetUnloadOption	function	for	you,	so	you	won’t	have	these	sorts	of	problems.	Writing	your	own	GetUnloadOption
function	is	fairly	simple.	The	code	is	as	follows:	Public	Shared	Function	GetUnloadOption(ByVal	dummy	As	String)	As	Integer	Return	CType(NXOpen.Session.LibraryUnloadOption.Immediately,	Integer)	End	Function	It’s	convenient	to	place	this	code	in	the	same	class	or	module	as	your	“Main”	function	—	in	our	case,	this	means	inside	the
NXOpenSample	class	that	we	created.	So,	you	just	need	to	paste	this	code	immediately	before	the	line	that	says	“End	Class”.	Please	look	up	GetUnloadOption	in	the	NX	Open	Programmer’s	Guide	for	more	information	about	unloading	code.	■	Example	5:	Editing	a	Recorded	Journal	Our	next	example	covers	how	to	edit	a	recorded	journal	to	create	a
reusable	application.	We	will	use	a	simple	workflow	to	show	the	general	procedure	for	editing	the	recorded	journal	to	remove	the	specific	recorded	selections	and	replace	them	with	selection	operations	that	will	work	on	generic	parts.	We	have	an	example	file	you	Unrestricted	Getting	Started	with	NX	Open	Chapter	3:	Using	Visual	Studio	Express
Page	24	can	use	in	ChangeLayerOfBody.vb	where	we	recorded	a	journal	that	changes	the	layer	of	a	selected	body	to	layer	45.	This	journal	is	listed	below:	'	NX	12.0.0.8	Imports	System	Imports	NXOpen	Module	NXJournal	Sub	Main(ByVal	args()	As	String)	Dim	theSession	As	NXOpen.Session	=	NXOpen.Session.GetSession()	Dim	workPart	As
NXOpen.Part	=	theSession.Parts.Work	Dim	displayPart	As	NXOpen.Part	=	theSession.Parts.Display	'	---'	Menu:	Format->Move	to	Layer...	'	---Dim	markId1	As	NXOpen.Session.UndoMarkId	markId1	=	theSession.SetUndoMark(NXOpen.Session.MarkVisibility.Visible,	"Move	Layer")	Dim
objectArray1(0)	As	NXOpen.DisplayableObject	Dim	body1	As	NXOpen.Body	=	CType(workPart.Bodies.FindObject("CYLINDER(2)"),	NXOpen.Body)	objectArray1(0)	=	body1	workPart.Layers.MoveDisplayableObjects(45,	objectArray1)	'	---'	Menu:	Tools->Journal->Stop	Recording	'	---End	Sub	End
Module	After	the	lines	creating	an	undo	mark	for	the	operation	is	a	line	that	specifies	the	body	that	you	want	to	move	to	layer	45.	This	line:	Dim	body1	As	NXOpen.Body	=	CType(workPart.Bodies.FindObject("CYLINDER(2)"),	NXOpen.Body)	looks	for	the	body	named	“CYLINDER(2)”.	We	will	replace	this	line	by	a	selection.	In	the	listing	below	we	have
edited	our	journal	to	ask	the	user	to	select	a	body	to	edit:	'	NX	12.0.0.8	Imports	System	Imports	NXOpen	Imports	NXOpen.Selection	'	Added	to	make	selection	code	simpler	Module	NXJournal	Sub	Main(ByVal	args()	As	String)	Dim	theSession	As	NXOpen.Session	=	NXOpen.Session.GetSession()	'	Get	UI	object	Dim	theUI	As	NXOpen.UI	=
NXOpen.UI.GetUI()	Dim	sel	As	NXOpen.Selection	=	theUI.SelectionManager	Dim	workPart	As	NXOpen.Part	=	theSession.Parts.Work	Dim	displayPart	As	NXOpen.Part	=	theSession.Parts.Display	'	---'	Menu:	Format->Move	to	Layer...	'	---Dim	markId1	As	NXOpen.Session.UndoMarkId	markId1	=
theSession.SetUndoMark(NXOpen.Session.MarkVisibility.Visible,	"Move	Layer")	Dim	objectArray1(0)	As	NXOpen.DisplayableObject	'Dim	body1	As	NXOpen.Body	=	CType(workPart.Bodies.FindObject("CYLINDER(2)"),	NXOpen.Body)	'	Ask	user	to	select	object	Dim	selObj	As	TaggedObject	Dim	cursor	As	Point3d	Dim	resp	As	Response	=
sel.SelectTaggedObject("Select	Object",	"Select	Object",	Unrestricted	Getting	Started	with	NX	Open	Chapter	3:	Using	Visual	Studio	Express	Page	25	SelectionScope.UseDefault,	False,	False,	selObj,	cursor)	If	resp	Response.Back	And	resp	Response.Cancel	Then	objectArray1(0)	=	body1	objectArray1(0)	=	CType(selObj,	DisplayableObject)
workPart.Layers.MoveDisplayableObjects(45,	objectArray1)	End	If	displayModification1.Dispose()	'	---'	Menu:	Tools->Journal->Stop	Recording	'	---End	Sub	End	Module	This	modified	journal	uses	a	selection	dialog	to	ask	the	user	to	pick	a	body	to	move	to	layer	45.	We	can	make	this	a	little	neater
by	moving	the	selection	code	into	a	separate	function	and	calling	it	from	our	main	program.	The	following	listing	shows	a	journal	with	the	selection	code	placed	in	a	Function	called	SelectBody.	This	function	will	return	the	selected	body	if	the	user	selects	a	body	or	Nothing	if	the	user	presses	Back	or	Cancel.	'	NX	12.0.0.8	Imports	System	Imports
NXOpen	Imports	NXOpen.Selection	'	Added	to	make	selection	code	simpler	Module	NXJournal	Sub	Main(ByVal	args()	As	String)	Dim	theSession	As	NXOpen.Session	=	NXOpen.Session.GetSession()	Dim	workPart	As	NXOpen.Part	=	theSession.Parts.Work	Dim	displayPart	As	NXOpen.Part	=	theSession.Parts.Display	'	---'
Menu:	Edit->Object	Display...	'	---Dim	markId1	As	NXOpen.Session.UndoMarkId	markId1	=	theSession.SetUndoMark(NXOpen.Session.MarkVisibility.Visible,	"Move	Layer")	Dim	objectArray1(0)	As	NXOpen.DisplayableObject	'Dim	body1	As	NXOpen.Body	=	CType(workPart.Bodies.FindObject("CYLINDER(2)"),
NXOpen.Body)	'	Ask	user	to	select	object	Dim	body1	As	Body	=	SelectBody()	If	body1	IsNot	Nothing	Then	objectArray1(0)	=	body1	workPart.Layers.MoveDisplayableObjects(45,	objectArray1)	End	If	displayModification1.Dispose()	'	---'	Menu:	Tools->Journal->Stop	Recording	'	---End	Sub	'
Function	to	ask	user	to	select	a	body	Unrestricted	Getting	Started	with	NX	Open	Chapter	3:	Using	Visual	Studio	Express	Page	26	Function	SelectBody()	As	Body	Dim	body1	As	Body	=	Nothing	'	Get	UI	object	Dim	theUI	As	NXOpen.UI	=	NXOpen.UI.GetUI()	Dim	sel	As	NXOpen.Selection	=	theUI.SelectionManager	Dim	objects1(0)	As
NXOpen.DisplayableObject	Dim	selObj	As	TaggedObject	Dim	cursor	As	Point3d	Dim	message	As	String	=	"Select	Body"	Dim	title	As	String	=	"Selection"	Dim	resp	As	Response	=	sel.SelectTaggedObject(message,	title,	SelectionScope.UseDefault,	False,	False,	selObj,	cursor)	If	resp	Response.Back	And	resp	Response.Cancel	Then	If	TypeOf	selObj	Is
Body	Then	body1	=	CType(selObj,	Body)	End	If	End	If	Return	body1	End	Function	End	Module	The	SelectBody	function	checks	if	the	selected	object	is	a	Body.	If	it	is	not,	then	the	function	returns	Nothing	for	the	selected	body.	Other	selection	functions	allow	you	to	filter	the	selected	objects	to	specific	types.	If	you	are	interested	in	filtering,	you	can
read	ahead	in	chapter	15,	which	covers	the	NX	Open	Selection	API	in	more	detail.	■	Debugging	in	Visual	Studio	The	full	version	of	Visual	Studio	(but	not	the	Express	edition)	provides	an	excellent	debugger	that	lets	you	step	through	your	code	one	line	at	a	time,	watching	what’s	happening	as	it	executes.	In	particular,	you	can	set	“breakpoints”	that
pause	the	execution	of	your	code,	allowing	you	to	examine	variable	values.	This	is	a	very	good	way	to	find	problems,	obviously.	The	techniques	used	with	SNAP	and	NX	Open	programs	are	a	little	unusual	because	you	are	debugging	code	called	by	a	“Main”	function	that	you	don’t	have	access	to	(because	it’s	inside	NX).	This	means	that	using	the
normal	“Start	Debugging”	command	within	Visual	Studio	is	not	appropriate.	There	are	two	alternative	approaches,	as	outlined	below,	but	neither	of	these	is	available	in	Visual	Studio	Express	editions.	Using	Debugger.Launch	First,	you	write	System.Diagnostics.Debugger.Launch	somewhere	near	the	beginning	of	your	code,	and	then	you	run	your
application	in	the	normal	way	using	File		Execute		NX	Open.	When	execution	reaches	the	Debugger.Launch	call,	the	Just-In-Time	Debugger	dialog	will	appear,	asking	you	which	debugger	you	want	to	use:	Double-click	on	the	debugger	for	your	current	project,	as	shown	in	the	picture	above,	and	you	will	be	taken	back	to	Visual	Studio	with	your	code
“paused”	at	the	Debugger.Launch	line,	ready	to	begin	stepping	through	it.	Using	Attach	To	Process	Within	Visual	Studio,	choose	Tools		Attach	to	Process	(or	press	Ctrl+Alt+P),	and	double-click	on	the	NX	process	(ugraf.exe)	in	the	list	of	available	processes.	Again,	run	your	application	using	File		Execute		NX	Open,	and	you	will	arrive	back	in	Visual
Studio	with	your	code	“paused”	at	the	first	breakpoint.	Unrestricted	Getting	Started	with	NX	Open	Chapter	3:	Using	Visual	Studio	Express	Page	27	Regardless	of	which	of	the	two	approaches	you	used,	you	are	now	ready	to	step	through	your	code.	The	available	options	are	shown	in	the	Debug	menu	or	on	the	Debug	Toolbar	within	Visual	Studio.	For
information	on	how	to	use	the	debugger	facilities,	please	consult	one	of	the	many	tutorials	available	on	the	internet.	Unrestricted	Getting	Started	with	NX	Open	Chapter	3:	Using	Visual	Studio	Express	Page	28	Chapter	4:	The	Visual	Basic	Language	One	of	the	strengths	of	NX	Open	is	that	it	is	based	on	standard	mainstream	programming	languages.
This	means	there	are	many	excellent	tools	you	can	use	(like	Visual	Studio),	and	there’s	lots	of	tutorial	and	help	material	available.	This	chapter	provides	an	introduction	to	the	Visual	Basic	language	(which	we	have	been	using	for	all	of	our	examples).	There	are	many	places	where	you	can	learn	more	about	Visual	Basic	(like	this	series	of	videos,	for
example),	so	our	description	here	will	be	very	brief.	When	looking	for	books	and	on-line	tutorials,	you	should	be	aware	that	the	Visual	Basic	language	has	evolved	significantly	over	the	years.	What	we	are	using	here	is	Visual	Basic	for	.NET.	Older	versions	(like	Visual	Basic	6,	for	example),	are	quite	different.	So,	when	you	start	reading,	make	sure	you
are	using	fairly	modern	materials.	If	you	really	want	the	complete	story,	you	can	read	the	Microsoft	documentation	on	this	web	page.	If	you	prefer	to	use	the	C#	language,	instead	of	Visual	Basic,	then	these	videos	should	be	helpful.	■	The	Development	Process	The	basic	process	of	creating	a	program	in	Visual	Basic	(or	any	other	language)	is	shown
below	source	code	object	code	run	compiler	The	process	is	quite	simple,	but	unfortunately	it	typically	involves	quite	a	lot	of	programmer	jargon.	The	Visual	Basic	statements	you	write	are	known	as	“source	code”.	This	code	is	typically	contained	in	one	or	more	text	files	with	the	extension	“.VB”.	Your	source	code	is	then	sent	to	a	compiler,	which
converts	it	into	“object	code”	that	your	computer	can	actually	understand	and	run.	The	object	code	is	sometimes	referred	to	as	an	“executable”	or	a	“library”,	or	an	“assembly”,	and	is	held	in	a	file	with	the	extension	“.EXE”	or	“.DLL”.	■	Structure	of	a	Visual	Basic	Program	A	Visual	Basic	program	has	standard	building	blocks,	typically	present	in	the
following	sequence:					Option	statements	Imports	statements	The	Main	procedure	Class	and	Module	elements	Option	Statements	Option	statements	establish	ground	rules	for	subsequent	code.	Option	Explicit	On	ensures	that	all	variables	are	declared,	which	may	make	debugging	easier.	Option	Strict	On	applies	more	strict	rules	to	variable	type
conversions,	which	helps	prevent	problems	that	can	occur	when	you	transfer	information	between	variables	of	different	types.	Option	Infer	On	asks	the	compiler	to	try	to	guess	the	types	of	your	variables,	which	reduces	the	need	for	declarations,	as	explained	a	little	later,	in	the	section	entitled	Omitting	Declarations.	If	you	place	Option	statements	in
your	source	code,	they	must	be	placed	at	the	beginning	of	a	source	file,	and	they	apply	only	to	the	source	file	in	which	they	appear.	Another	approach	is	to	specify	compilation	options	in	the	properties	of	a	Visual	Studio	project,	in	which	case	they	apply	to	the	entire	project.	This	is	often	more	convenient.	Imports	Statements	and	Namespaces	Placing	an
Imports	statement	at	the	beginning	of	a	source	file	allows	you	to	use	abbreviated	names	within	that	file	(rather	than	longer	“fully	qualified”	ones),	which	reduces	your	typing	effort.	For	example,	suppose	you	will	frequently	be	using	the	System.Console.WriteLine	function	to	output	text.	If	you	write	Imports	System.Console	at	the	beginning	of	your
source	file,	then	you	can	refer	to	this	function	as	simply	WriteLine	whenever	you	need	it.	Unrestricted	Getting	Started	with	NX	Open	Chapter	4:	The	Visual	Basic	Language	Page	29	In	Visual	Basic,	the	thing	that	appears	in	an	Imports	statement	can	be	either	a	class	or	a	namespace.	Classes	are	explained	later	in	this	chapter.	Namespaces	help	you	to
organize	large	quantities	of	code	into	related	subgroups,	and	to	distinguish	different	uses	of	the	same	name.	Suppose	you	had	a	large	application	that	performed	operations	on	both	fish	and	musical	instruments.	This	probably	isn’t	very	likely,	but	it	provides	a	convenient	illustration.	You	might	invent	two	namespaces	called	Instruments	and	Fish	to
hold	your	code.	You	could	use	the	name	Bass	within	both	of	these	namespaces,	because	Instruments.Bass	and	Fish.Bass	would	be	two	different	names.	If	you	wrote	Imports	Instruments	at	the	top	of	a	code	file,	you	could	use	the	name	Bass	instead	of	Instruments.Bass.	If	you	wrote	both	Imports	Instruments	and	Imports	Fish,	then	you	would	create	a
problem,	of	course,	because	then	the	name	Bass	would	be	ambiguous.	The	Main	Procedure	The	Main	procedure	is	the	“starting	point”	for	your	application	—	the	first	procedure	that	is	accessed	when	you	run	your	code.	Main	is	where	you	would	put	the	code	that	needs	to	be	accessed	first.	Classes,	Modules,	and	Files	Each	line	of	executable	code	must
belong	to	some	class	or	module.	Classes	are	explained	near	the	end	of	this	chapter.	For	now,	you	can	consider	a	class	to	be	a	related	collection	of	code	and	data	fields,	often	representing	some	generic	type	of	object.	A	module	is	really	a	special	simplified	type	of	class.	Modules	are	not	as	flexible	as	classes,	and	they	are	not	used	as	much	in	real-world
applications,	but	we	use	them	in	this	document	because	they	provide	a	convenient	way	to	temporarily	manage	smallish	snippets	of	code.	As	you	may	recall,	the	NX	Journaling	function	always	produces	code	that	is	packaged	into	a	Module.	Many	people	advocate	placing	each	class	in	its	own	source	file,	and	giving	this	source	file	the	same	name	as	the
class,	but,	you	can	place	several	classes	in	a	single	file,	if	you	want	to.	Conversely,	you	do	not	have	to	put	an	entire	class	within	a	single	file	—	by	using	the	“partial	class”	capability,	you	can	split	a	class	definition	into	several	files,	which	is	often	useful.	■	An	Example	Program	The	listing	below	shows	a	simple	program	containing	most	of	the	elements
mentioned	above.	Option	Infer	On	Imports	System,	NXOpen	Module	MyProgram	Sub	Main()	Dim	radius	As	Double	=	3.75	Dim	area	As	Double	area	=	CircleArea(radius)	Dim	message	As	String	=	"Area	is:	"	Guide.InfoWriteLine(message	&	area)	End	Sub	'	Function	to	calculate	the	area	of	a	circle	Function	CircleArea(r	As	Double)	As	Double	Dim	pi	As
Double	=	System.Math.PI	Dim	area	As	Double	=	pi	*	r	*	r	Return	area	End	Function	End	Module	The	program	starts	with	an	Option	statement	and	an	Imports	statement.	Then	there	is	a	single	module	called	“MyProgram”	that	holds	all	the	executable	code.	Inside	this	module	there	is	a	“Main”	procedure,	as	always,	and	then	another	function	called
CircleArea.	Unrestricted	Getting	Started	with	NX	Open	Chapter	4:	The	Visual	Basic	Language	Page	30	The	following	table	gives	more	details:	Lines	of	code	Explanation	Option	Infer	On	Tells	the	compiler	that	it	should	try	to	guess	the	types	of	variables	if	you	don’t	declare	them	explicitly	Imports	NXOpen	Allows	you	to	refer	to	functions	in	the	NXOpen
namespace	using	short	names	Dim	radius	As	Double	=	3.75	Declares	a	variable	of	type	Double,	gives	it	the	name	radius,	and	stores	the	value	3.75	in	it.	Dim	area	As	Double	Declares	another	variable	of	type	Double,	and	names	it	area	area	=	CircleArea(radius)	Calls	a	function	named	CircleArea,	which	is	defined	below.	The	variable	radius	is	used	as
the	input	to	this	function,	and	the	output	returned	from	the	function	is	written	into	the	variable	named	area.	Dim	message	As	String	=	"Area	is:	"	Declares	and	initializes	a	variable	of	type	String	Guide.InfoWriteLine(message	&	area)	Calls	a	function	named	Guide.InfoWriteLine	to	write	text	to	the	NX	Info	window.	This	function	lives	in	the	NXOpen
namespace,	so	its	full	name	is	NXOpen.Guide.InfoWriteLine.	We	can	use	the	shortened	name	here	because	we	wrote	“Imports	NXOpen”	above	'	Function	to	calculate	circle	area	This	is	a	“comment”.	Comments	are	descriptive	text	to	help	you	and	other	readers	understand	the	code.	They	are	ignored	by	the	compiler.	Function	CircleArea(r	As	Double)
As	Double	This	is	the	heading	for	the	definition	of	a	function	named	CircleArea.	The	text	in	parentheses	says	that,	when	this	function	is	called,	it	should	receive	as	input	a	variable	of	type	Double,	which	will	be	referred	to	as	“r”.	As	output,	the	function	will	return	an	item	of	type	Double.	Dim	pi	As	Double	=	Math.PI	Defines	a	variable	called	pi	and	gives
it	the	value	π	(accurate	to	around	15	decimal	places).	The	full	name	of	the	item	on	the	right	is	System.Math.PI.	But	we	have	Imports	System	at	the	top	of	our	file,	so	we	can	use	the	shortened	name	Math.PI.	Dim	area	=	pi	*	r	*	r	Calculates	the	area,	and	stores	it	in	a	newly	declared	variable	called	area.	We	do	not	need	to	write	“As	Double”	because	the
compiler	can	infer	this.	Return	area	Returns	the	value	area	as	the	output	of	the	function	■	Lines	of	Code	Generally,	you	place	one	statement	on	each	line	of	your	source	file.	But	you	can	put	several	statements	on	a	single	line	if	you	separate	them	by	the	colon	(:)	character.	So,	for	example,	you	might	write	x1	=	3	x2	=	1	:	:	y1	=	5	y2	=	2	:	:	z1	=	7	z2	=
9	A	statement	usually	fits	on	one	line,	but	when	it	is	too	long,	you	can	continue	it	onto	the	next	line	by	placing	a	space	followed	by	an	underscore	character	(_)	at	the	end	of	the	first	line.	For	example:	Dim	identityMatrix	As	Double(,)	Unrestricted	Getting	Started	with	NX	Open	=	{	{1,	0,	0},	_	{0,	1,	0},	_	{0,	0,	1}	}	Chapter	4:	The	Visual	Basic
Language	Page	31	Actually,	in	modern	versions	of	Visual	Basic,	the	underscores	are	often	unnecessary,	since	the	compiler	can	figure	out	by	itself	when	a	line	of	code	is	supposed	to	be	a	continuation	of	the	one	before	it.	Note	that	“white	space”	(space	and	tab	characters)	don’t	make	any	difference,	except	in	readability.	The	following	three	lines	of
code	do	exactly	the	same	thing,	but	the	first	is	much	easier	to	read,	in	my	opinion:	y	=	3.5	*	(x	+	b*(z	-	1))	y=3.5*(x+b*(z-1))	y	=3.5	*	(x+b	*	(z	-	1))	■	Built-In	Data	Types	In	Visual	Basic,	as	in	most	programming	languages,	we	use	variables	for	storing	values.	Every	variable	has	a	name,	by	which	we	can	refer	to	it,	and	a	data	type,	which	determines
the	kind	of	data	that	the	variable	can	hold.	Some	of	the	more	common	built-in	data	types	are	shown	in	the	following	table:	Type	Description	Examples	Approximate	Range	of	Values	Integer	A	whole	number	1,	2,	999,–2,	0	–2,147,483,648	through	2,147,483,647	Double	Floating-point	number	1.5,	–3.27,	3.56E+2	4.9	×	10–324	to	1.8	×	10308,	positive	or
negative	Char	Character	“x”c,	“H”c,	“山”c	Any	Unicode	character	String	String	of	characters	“Hello”,	“中山”	Zero	up	to	about	2	billion	characters	Boolean	Logical	value	True,	False	True	or	False	Object	Holds	any	type	of	data	Anything	Note	that	variables	of	type	Double	can	use	scientific	notation:	the	“E”	refers	to	a	power	of	10,	so	3.56E+2	means	3.56
×	102,	which	is	356,	and	3.56E-2	means	0.0356.	There	are	many	other	built-in	data	types,	including	byte,	decimal,	date,	and	so	on,	but	the	ones	shown	above	are	the	most	useful	for	our	purposes.	■	Declaring	and	Initializing	Variables	To	use	a	variable,	you	first	have	to	declare	it	(or,	this	is	a	good	idea,	at	least).	It’s	also	a	good	idea	to	give	the	variable
some	initial	value	at	the	time	you	declare	it.	Generally,	a	declaration/initialization	takes	the	following	form:	Dim	As	=	So,	some	examples	are:	Dim	Dim	Dim	Dim	Dim	n	As	Integer	=	-45	triple	As	Integer	=	3*n	biggestNumberExpected	As	Integer	=	999	diameter	As	Double	=	3.875	companyName	As	String	=	"Acme	Incorporated"	For	more	complex	data
types,	you	use	the	“New”	keyword	and	call	a	“constructor”	to	declare	and	initialize	a	new	variable,	like	this:	Dim	As	New	(constructor	inputs)	Dim	v	As	New	NXOpen.Vector3d(1,	0,	0)	Dim	generator	As	New	System.Random()	Dim	myButton	As	New	System.Windows.Forms.Button()	A	variable	name	may	contain	only	letters,	numbers,	and	underscores,
and	it	must	begin	with	either	a	letter	or	an	underscore	(not	a	number).	Variable	names	are	NOT	case	sensitive,	so	companyName	and	CompanyName	are	the	same	thing.	Also,	variable	names	must	not	be	the	same	as	Visual	Basic	keywords	(like	Dim	or	Integer).	Unrestricted	Getting	Started	with	NX	Open	Chapter	4:	The	Visual	Basic	Language	Page	32
There	are	some	ways	to	omit	or	shorten	variable	declarations,	as	explained	in	the	next	section.	■	Omitting	Variable	Declarations	When	you’re	just	experimenting	with	small	programs,	declaring	variables	is	sometimes	not	very	helpful,	and	the	extra	typing	and	text	just	interfere	with	your	thought	process.	If	you	put	Option	Explicit	Off	at	the	beginning
of	your	program,	then	this	will	prevent	the	compiler	from	complaining	about	missing	declarations,	and	this	might	make	your	life	easier	(for	a	while,	anyway).	On	the	other	hand,	as	we	saw	in	chapter	3,	declaring	variables	helps	the	compiler	find	mistakes	for	you,	so	it’s	valuable.	When	you	write	Option	Explicit	Off,	the	compiler	doesn’t	know	the	types
of	undeclared	variables,	so	it	assumes	that	they	are	all	of	type	System.Object.	As	we	will	see	later,	all	objects	in	Visual	Basic	are	derived	(either	directly	or	indirectly)	from	System.Object,	so	a	variable	of	this	type	can	hold	any	value	whatsoever,	and	any	assignment	statement	will	work,	no	matter	how	peculiar:	vec	vec	vec	x	=	=	3.75	=	"hello"	=	New
Vector3d(2,3,7)	vec.X	'	'	'	'	vec	is	of	type	System.Object	so	this	strange	assignment	works	and	so	does	this	this	works,	too,	but	we	get	no	help	from	Intellisense	When	a	variable	is	of	type	System.Object,	you	don’t	get	much	help	from	Visual	Studio	Intellisense.	When	you	type	the	dot	in	the	fourth	line	of	code	above,	you	might	be	hoping	to	see	a	helpful
list	of	the	properties	of	a	Vector3d	object,	but	you	won’t,	because	the	compiler	thinks	that	vec	is	a	System.Object,	not	a	Vector3d.	If	you	get	tired	of	declaring	variables,	but	you	still	want	the	compiler	to	find	your	mistakes,	and	give	you	helpful	Intellisense	hints,	then	a	good	compromise	is	Option	Infer	On.	With	this	option,	the	compiler	tries	to	guess
the	type	of	a	variable,	based	on	its	initialization	or	first	usage.	The	code	looks	like	this:	Dim	Dim	Dim	Dim	Dim	x	=	3.75	y	=	Math.SinD(x)	greeting	=	"hello"	vec	=	Vector3d(2,3,4)	x	=	vec.X	'	'	'	'	'	Compiler	guesses	that	x	is	of	type	Double	Compiler	guesses	that	y	is	of	type	Double	Compiler	guesses	that	greeting	is	of	type	String	Compiler	guesses	that
vec	is	of	type	NXOpen.Vector3d	Intellisense	helps	us,	now	The	word	Dim	before	a	variable	is	what	prompts	the	compiler	to	start	guessing.	You	are	still	declaring	the	variables	x,	y,	greeting,	and	vec,	but	you	don’t	have	to	tell	the	compiler	their	types,	because	it	can	guess	from	the	context.	This	can	cut	down	on	a	lot	of	repetition,	and	make	your	code
much	easier	to	read.	In	the	following,	the	second	three	lines	of	code	are	much	clearer	than	the	first	three,	and	just	as	safe:	Dim	p1	As	NXOpen.Point3d	=	New	NXOpen.Point3d(2,3,4)	Dim	q1	As	NXOpen.Point3d	=	New	NXOpen.Point3d(7,5,9)	Dim	a1	As	NXOpen.Line	=	workPart.Curves.CreateLine(p1,	p1)	Dim	p1	=	New	NXOpen.Point3d(2,3,4)	Dim
q1	=	New	NXOpen.Point3d(7,5,9)	Dim	a1	=	workPart.Curves.CreateLine(p1,	p1)	In	the	examples	later	in	this	document,	we	will	sometimes	use	Option	Infer	On	to	make	the	code	shorter	and	easier	to	read.	You	have	to	be	a	little	careful,	sometimes,	because	the	guessing	isn’t	foolproof.	Consider	the	following	code:	Dim	x	=	5	x	=	System.Math.PI	'
Compiler	assumes	that	x	is	an	Integer	'	Error	or	unwanted	rounding	The	compiler	will	infer	that	x	is	an	Integer.	So,	in	the	second	line	of	code,	we’re	trying	to	assign	a	Double	value	to	an	Integer	variable,	and	we’ll	either	get	an	error	message,	or	the	value	of	x	will	be	rounded	to	3	(instead	of	3.14159...)	when	it’s	stored	in	the	variable	x.	To	avoid	this
sort	of	problem,	you	can	write	Dim	x	=	5.0	in	the	first	line,	which	will	tell	the	compiler	that	x	is	supposed	to	be	a	Double.	Unrestricted	Getting	Started	with	NX	Open	Chapter	4:	The	Visual	Basic	Language	Page	33	■	Data	Type	Conversions	Conversion	is	the	process	of	changing	a	variable	from	one	type	to	another.	Conversions	may	either	be	widening
or	narrowing.	A	widening	conversion	is	a	conversion	from	one	type	to	another	type	that	is	guaranteed	to	be	able	to	contain	it	(from	Integer	to	Double,	for	example),	so	it	will	never	fail.	In	a	narrowing	conversion,	the	destination	variable	may	not	be	able	to	hold	the	value	(an	Integer	variable	can’t	hold	the	value	3.5),	so	the	conversion	may	fail.
Conversions	can	be	either	implicit	or	explicit.	Implicit	conversions	occur	without	any	special	syntax,	like	this:	Dim	weightLimit	As	Integer	=	500	Dim	weight	As	Double	=	weightLimit	'	Implicit	conversion	from	Integer	to	Double	Explicit	conversions,	on	the	other	hand,	require	so-called	“cast”	operators,	as	in	the	following	examples.	Dim	weight	As
Double	=	500.637	Dim	roughWeight	As	Integer	roughWeight	=	CInt(weight)	roughWeight	=	CType(weight,	Integer)	'	Cast	weight	to	an	integer	(rounding	occurs)	'	Different	technique,	but	same	result	You	can	perform	casts	with	the	general	CType	function,	or	with	more	specific	functions	like	CInt.	The	result	is	exactly	the	same	—	the	weight	value	is
rounded	and	we	get	roughWeight	=	501.	The	set	of	allowable	implicit	conversions	depends	on	the	Option	Strict	setting.	If	you	use	Option	Strict	On,	only	widening	conversions	may	occur	implicitly.	With	Option	Strict	Off,	both	widening	and	narrowing	conversions	may	occur	implicitly.	■	Arithmetic	and	Math	Arithmetic	operators	are	used	to	perform
the	familiar	numerical	calculations	on	variables	of	type	Integer	and	Double.	The	only	operator	that	might	be	slightly	unexpected	is	“^”,	which	performs	exponentiation	(raises	a	number	to	a	power).	Here	are	some	examples:	Dim	m	As	Integer	=	3	Dim	n	As	Integer	=	4	Dim	p1,	p2,	p3,	p4,	p5	As	Integer	p1	=	m	+	n	'	p1	now	has	the	value	p2	=	2*m	+	n	-
1	'	p2	now	has	the	value	p3	=	2*(m	+	n)	-	1	'	p3	now	has	the	value	p4	=	m	/	n	'	p4	now	has	the	value	p5	=	m	^	n	'	p5	now	has	the	value	7	9	13	1.	Beware	!!	81	Even	though	m	and	n	are	both	integers,	performing	a	division	produces	a	Double	(0.75)	as	its	result.	But	then	when	you	assign	this	value	to	the	Integer	variable	p4,	it	gets	rounded	to	1.	With
either	Integer	or	Double	data	types,	dividing	by	zero	will	cause	trouble,	of	course.	The	System.Math	namespace	contains	all	the	usual	mathematical	functions,	so	you	can	write	things	like:	Dim	rightAngle	As	Double	=	System.Math.PI	/	2	Dim	cosine	As	Double	=	System.Math.Cos(rightAngle)	Dim	x,	y,	r,	theta	As	Double	theta	=	System.Math.Atan2(3,	4)
'	theta	is	about	0.6345	(radians)	x	=	System.Math.Cos(theta)	'	x	gets	the	value	0.8	y	=	System.Math.Sin(theta)	'	y	gets	the	value	0.6	r	=	System.Math.Sqrt(x*x	+	y*y)	Note	that	the	trigonometric	functions	expect	angles	to	be	measured	in	radians,	not	in	degrees.	Other	useful	tools	include	hyperbolic	functions	(Sinh,	Cosh,	Tanh),	logarithms	(Log	and
Log10),	and	absolute	value	(Abs).	Visual	Studio	Intellisense	will	show	you	a	complete	list	as	you	type.	Unrestricted	Getting	Started	with	NX	Open	Chapter	4:	The	Visual	Basic	Language	Page	34	In	floating	point	arithmetic	(with	Double	variables),	small	errors	often	occur	because	of	round-off.	For	example,	calculating
0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1	(10	times)	won’t	give	you	1.0,	you’ll	get	0.99999999999999989,	instead.	Tiny	errors	like	this	usually	don’t	matter	in	engineering	applications.	But,	in	cases	where	they	do,	you	can	use	the	Decimal	data	type,	instead	of	Double.	Arithmetic	is	much	slower	with	Decimal	variables,	but	more	precise.	■	Logical
Values	&	Operators	Visual	Basic	provides	a	set	of	relational	operators	that	perform	some	comparison	between	two	operands	and	return	a	Boolean	(true	or	false)	result.	Briefly,	these	operators	are,	=,	,	=,	.	Their	meanings	are	fairly	obvious,	except	perhaps	for	the	last	one,	which	means	“is	not	equal	to”.	Also,	there	are	some	logical	operators	that	act
on	Boolean	operands.	They	are:					And:	the	result	is	True	when	both	of	the	operands	are	True	Or:	the	result	is	True	when	at	least	one	of	the	operands	is	True	Xor:	the	result	is	True	when	exactly	one	of	the	operands	is	True	Not:	this	is	a	unary	operator.	The	result	is	True	if	the	operand	is	False	Using	these	operators,	we	can	construct	complex
conditions	for	use	in	If	statements	and	elsewhere:	Dim	Dim	Dim	Dim	Dim	b1	b2	b3	b4	b5	b6	four	As	five	As	six	As	m,	n	As	b1,	b2,	=	=	=	=	=	=	Integer	Integer	Integer	Integer	b3,	b4,	=	4	=	5	=	6	b5,	b6	As	Boolean	(four	=	five)	(six	<	five)	(four	five)	("four"	<	"five")	(four	<	five)	And	(five	<	six)	(m	<	n)	Or	(m	>=	n)	'	'	'	'	'	'	Result	Result	Result	Result
Result	Result	is	is	is	is	is	is	False	False	True	False.	String	comparison	is	alphabetical	!	True	True	(regardless	of	values	of	m	and	n)	■	Arrays	An	array	is	a	collection	of	values	that	are	related	to	each	other	in	some	way,	and	have	the	same	data	type.	Within	an	array,	you	can	refer	to	an	individual	element	by	using	the	name	of	the	array	plus	a	number.
This	number	has	various	names:	index,	offset,	position,	or	subscript	are	some	common	ones.	The	term	“offset”	is	perhaps	the	best,	since	it	highlights	the	fact	that	the	numbering	starts	at	zero	—	the	first	element	of	the	array	has	an	offset	of	zero.	In	the	following	code,	the	first	line	declares	and	initializes	an	array	variable	that	holds	the	number	of
people	who	work	on	each	floor	of	an	office	building.	It	says	that	5	people	work	on	the	ground	floor,	27	on	the	first	floor,	and	so	on.	Then	the	second	and	third	lines	read	values	from	the	people	array.	Dim	people	As	Integer()	=	{5,	27,	22,	31}	Dim	groundFloorPeople	As	Integer	=	people(0)	Dim	firstFloorPeople	As	Integer	=	people(1)	'	5	people	work	on
the	ground	floor	'	27	people	work	on	the	first	floor	Note	that	the	style	of	array	declaration	shown	here	is	perfectly	legal,	but	it	is	not	the	usual	one.	Most	VB	programmers	would	write	Dim	people()	As	Integer,	but	I	think	the	style	shown	above	makes	more	sense	—	it	says	that	people	is	an	Integer()	(i.e.	it	is	an	Integer	array).	If	you	want	to	declare	and
initialize	the	array	separately,	then	you	write	something	like:	Unrestricted	Getting	Started	with	NX	Open	Chapter	4:	The	Visual	Basic	Language	Page	35	Dim	people	As	Integer()	people	=	New	Integer(3)	{}	people(0)	=	5	people(1)	=	27	people(2)	=	22	people(3)	=	31	'	Declares	people	as	an	array	of	integers	'	Initialises	the	"people"	array	variable	'
Initialise	the	elements	of	the	array,	one	by	one	In	this	case,	you	need	to	place	an	integer	between	the	parentheses	in	the	declaration.	Note	that	the	number	you	use	is	the	upper	bound	of	the	array	(the	highest	index),	which	is	one	less	than	the	number	of	elements	in	the	array.	So,	in	the	example	above,	the	“New	Integer(3)”	gave	us	an	array	of	four
integers	with	indices	0,	1,	2,	3.	If	you	have	experience	with	C-style	programming	languages,	this	can	be	very	confusing,	so	please	beware.	You	can	also	create	two-dimensional	(and	higher	dimension)	arrays	using	declarations	like	Dim	identityMatrix	As	Double(,)	=	{	{1,0,0},	{0,1,0},	{0,0,1}	}	The	.NET	framework	provides	many	useful	functions	for
working	with	arrays.	For	example:					The	Length	property	returns	the	total	number	of	elements	in	the	array	The	GetUpperBound	method	returns	the	highest	index	value	for	the	specified	dimension	The	Sort	method	sorts	the	elements	of	a	one-dimensional	array	The	Find	and	FindIndex	methods	allow	you	to	search	for	specific	items	■	Other	Types	of
Collections	The	.NET	Framework	includes	the	System.Collections	namespace,	which	provides	many	useful	“collections”	that	are	more	general	than	the	arrays	described	above.	For	example,	there	are	Lists,	Dictionaries	(Hash	Tables),	Queues,	Stacks,	and	so	on.	You	should	use	a	List	(rather	than	an	array)	when	you	don’t	know	in	advance	how	many
items	you	will	need	to	store.	Here	is	a	simple	example:	Dim	nameList	As	New	List(Of	String)	'	Create	a	list	of	strings	Dim	name	As	String	Do	'	Loop	to	collect	names	name	=	GetName()	'	Get	the	next	name,	somehow	nameList.Add(name)	'	Add	it	to	our	list	Loop	Until	name	=	""	'	Keep	going	until	a	blank	name	is	encountered	There	is	also	a	general
collection	called	an	ArrayList,	which	can	hold	elements	of	different	types.	So,	you	can	write:	Dim	myList	As	New	ArrayList	myList.Add("apple	pie")	myList.Add(System.Math.PI)	Dim	x	as	Double	=	myList(1)	'	Gives	x	the	value	3.14159625	etc.	Like	a	List,	an	ArrayList	expands	dynamically	as	you	add	elements.	Though	the	ArrayList	type	is	more	general,
you	should	use	the	List	type,	where	possible,	since	it	is	faster	and	less	error-prone.	Most	of	the	“collection”	types	support	the	same	capabilities	as	arrays,	such	as	indexing,	counting,	sorting,	searching,	and	so	on.	■	Strings	A	String	is	essentially	an	array	of	characters.	You	can	declare	and	initialize	a	string	with	one	statement	like:	Dim	myString	As
String	=	"Hello,	World!"	Unrestricted	Getting	Started	with	NX	Open	Chapter	4:	The	Visual	Basic	Language	Page	36	You	can	extract	characters	from	a	String	just	as	if	it	were	an	array	of	characters:	Dim	Dim	Dim	Dim	alphabet	As	String	=	"ABC"	c0	As	Char	=	alphabet(0)	c1	As	Char	=	alphabet(1)	c2	As	Char	=	alphabet(2)	'	Sets	c0	equal	to	"A"	'	Sets
c1	equal	to	"B"	'	Sets	c2	equal	to	"C"	You	can	“concatenate”	two	strings	(join	them	together	into	one)	using	either	the	“+”	or	“&”	operators.	Also,	there	are	many	useful	functions	available	for	working	with	strings;	some	of	them	are:	Trim,	ToUpper,	ToLower,	SubString,	StartsWith,	Compare,	Copy,	Split,	Remove	and	Length.	For	example:	Dim
firstName	As	String	=	"Jonathon"	Dim	lastName	As	String	=	"Smith"	Dim	nickName	As	String	=	firstName.Substring(0,	3)	Dim	fullName	As	String	=	firstName	&	"	"	&	lastName	Dim	greeting	As	String	=	"Hi,	"	&	nickName	'	Sets	nickName	=	"Jon"	'	Sets	fullName	=	"Jonathon	Smith"	'	Sets	greeting	=	"Hi,	Jon"	Strings	are	immutable,	which	means	that
once	you	assign	a	value	to	one,	it	cannot	be	changed.	Whenever	you	assign	another	value	to	a	string,	or	edit	it	in	some	way,	you	are	actually	creating	a	new	copy	of	the	string	variable	and	deleting	the	old	one.	If	you	are	doing	a	lot	of	modifications	to	a	string	variable,	use	the	StringBuilder	type,	instead,	because	it	avoids	this	deletion/recreation	and
gives	much	better	performance.	Any	.NET	object	can	be	converted	to	String	form	using	the	ToString	method.	So,	for	example,	this	code	Dim	pi	As	Double	=	System.Math.PI	Dim	piString	As	String	=	pi.ToString	will	place	the	string	“3.14159265358979”	in	the	variable	piString.	■	Enumerations	Enumerations	provide	a	convenient	way	to	work	with	sets
of	related	constants.	You	can	give	names	to	the	constants,	which	makes	your	code	easier	to	read	and	modify.	For	example,	in	NX	Open,	there	is	an	enumeration	that	represents	the	various	types	of	line	font	that	can	be	assigned	to	an	object.	In	shortened	form,	its	definition	might	look	something	like	this:	Enum	ObjectFont	Solid	=	0	Dashed	=	1	Dotted
=	2	End	Enum	Having	made	this	definition,	the	symbol	ObjectFont.Dotted	now	permanently	represents	the	number	2.	The	benefit	is	that	a	statement	like	myFont	=	ObjectFont.Dotted	is	much	easier	to	understand	than	myFont	=	2.	■	Nothing	Some	of	the	data	types	we	have	discussed	above	can	have	a	special	value	called	Nothing	(or	“null”	in	some
other	programming	languages).	For	example,	strings,	arrays,	and	objects	can	all	have	the	value	Nothing.	Visual	Basic	provides	a	special	function	called	IsNothing	to	make	it	easy	to	test	for	this	value.	Note	that	Nothing	does	not	indicate	a	string	with	no	characters,	or	an	array	with	zero	length,	as	the	following	code	illustrates:	Dim	nullString	As	String
=	Nothing	Dim	zeroLengthString	As	String	=	""	'	A	String	variable	with	value	=	Nothing	'	A	String	with	zero	length	(no	characters)	Dim	b1	As	Boolean	=	IsNothing(nullString)	Dim	b2	As	Boolean	=	IsNothing(zeroLengthString)	Unrestricted	Getting	Started	with	NX	Open	'	True	'	False	Chapter	4:	The	Visual	Basic	Language	Page	37	Simple	data	types
like	Integer,	Double,	Vector3d	and	Point3d	cannot	have	the	value	Nothing,	ordinarily	—	there	is	no	such	thing	as	a	null	integer	or	a	null	Point3d.	This	is	actually	quite	inconvenient,	at	times.	For	example,	in	a	function	that	computes	the	point	of	intersection	of	two	curves,	it	would	be	natural	to	return	Nothing	if	the	curves	don’t	actually	intersect.
Fortunately,	recent	versions	of	Visual	Basic	provide	a	solution	via	a	technology	called	“nullable	value	types”:	by	placing	a	question	mark	(?)	after	a	variable	type,	you	can	indicate	that	it	should	be	allowed	to	hold	the	value	Nothing,	in	addition	to	its	“regular”	values.	Then	you	can	use	the	HasValue	function	to	find	out	whether	or	not	the	variable	holds	a
“real”	value,	rather	than	Nothing.	Actually,	Point3d?	is	an	abbreviation	for	Nullable(Of	Point3d),	and	you	may	see	the	longer	form	in	documentation,	sometimes.	■	Decision	Statements	Simple	decisions	can	be	implemented	using	the	If	Then	Else	construct,	as	shown	in	the	following	tax	computation.	It	assumes	that	we	have	already	defined	two
variables	called	income	and	tax	If	income	<	27000	Then	tax	=	income	*	0.15	ElseIf	income	<	65000	Then	tax	=	4000	+	(income	-	27000)	*	0.25	Else	tax	=	4000	+	(income	-	65000)	*	0.35	End	If	'	15%	tax	bracket	'	25%	tax	bracket	'	35%	tax	bracket	If	there	were	only	two	tax	brackets,	we	wouldn’t	need	the	ElseIf	clause,	so	our	code	could	be	simpler:	If
income	<	27000	Then	tax	=	income	*	0.15	Else	tax	=	4000	+	(income	-	65000)	*	0.35	End	If	'	15%	tax	bracket	'	35%	tax	bracket	This	could	be	simplified	even	further:	tax	=	income	*	0.15	If	income	>	27000	Then	tax	=	4000	+	(income	-	65000)	*	0.35	End	If	'	15%	tax	bracket	'	35%	tax	bracket	Finally,	we	can	compress	the	If	statement	into	a	single	line,
if	we	want	to:	If	income	>	27000	Then	tax	=	4000	+	(income	-	65000)	*	0.35	'	35%	tax	bracket	■	Looping	It	is	often	useful	to	repeat	a	set	of	statements	a	specific	number	of	times,	or	until	some	condition	is	met,	or	to	cycle	through	some	set	of	objects.	These	processes	are	all	called	“looping”.	The	most	basic	loop	structure	is	the	For	...	Next	loop,	which
takes	the	following	form	For	i	=	0	To	n	a(i)	=	0.5	*	b(i)	c(i)	=	a(i)	+	b(i)	Next	The	variable	i	is	called	the	loop	counter.	The	statements	between	the	For	line	and	the	Next	line	are	called	the	body	of	the	loop.	These	statements	are	executed	n+1	times,	with	the	counter	i	set	successively	to	0,	1,	2,	…,	n.	It	is	often	convenient	to	declare	the	counter	variable
within	the	For	statement.	Also,	you	can	append	the	name	of	the	counter	variable	to	the	Next	statement,	which	sometimes	improves	clarity,	especially	in	“nested”	loops	like	this:	Unrestricted	Getting	Started	with	NX	Open	Chapter	4:	The	Visual	Basic	Language	Page	38	For	i	As	Integer	=	0	To	m	For	j	As	Integer	=	0	To	n	c(i,	j)	=	a(i)	+	b(j)	Next	j	Next	i
Several	other	looping	constructs	are	available,	including:		The	For	Each...Next	construction	runs	a	set	of	statements	once	for	each	element	in	a	collection.	You	specify	the	loop	control	variable,	but	you	do	not	have	to	determine	starting	or	ending	values	for	it.		The	Do...Loop	construction	allows	you	to	test	a	condition	at	either	the	beginning	or	the	end	of
a	loop	structure.	You	can	also	specify	whether	to	repeat	the	loop	while	the	condition	remains	True	or	until	it	becomes	True.	■	Functions	and	Subroutines	In	many	cases,	you	will	call	a	“function”	to	perform	some	task.	For	example,	you	call	the	Math.Sqrt	function	to	calculate	the	square	root	of	a	number,	or	you	call	the	NX	Open	CreatePoint	function	to
create	a	Point.	Sometimes	the	function	is	one	that	you	wrote	yourself,	but,	more	often,	it’s	part	of	some	library	of	functions	written	by	someone	else	(like	NX	Open).	You	pass	inputs	to	a	function	when	you	call	it,	the	code	inside	the	function	is	executed,	and	then	(sometimes)	it	returns	some	value	to	you	as	output.	The	function	provides	a	convenient
place	to	put	a	block	of	code,	so	that	it’s	easy	to	re-use.	Here	are	some	examples	of	function	calls:	'	Some	calls	to	the	Math.Sqrt	function	Dim	x,	y,	z	As	Double	x	=	3	y	=	Math.Sqrt(x)	z	=	Math.Sqrt(5)	Dim	root2	As	Double	=	Math.Sqrt(2)	'	Some	calls	to	the	NXOpen.Guide.InfoWriteLine	function	Dim	greeting	As	String	=	"Hello"
NXOpen.Guide.InfoWriteLine(greeting)	NXOpen.Guide.InfoWriteLine("Goodbye")	'	Some	more	calls	to	NXOpen	functions	Dim	p	As	New	NXOpen.Point3d(3,	5,	7)	workPart.Points.CreatePoint(p)	In	Visual	Basic,	a	function	that	does	not	return	a	value	is	called	a	“Subroutine”	or	just	a	“Sub”.	In	the	code	above,	NXOpen.Guide.InfoWriteLine	is	a
subroutine,	but	Math.Sqrt	and	CreatePoint	are	not.	Even	if	a	function	does	return	a	value,	you	are	not	obligated	to	use	this	value.	For	example,	in	the	code	above,	we	didn’t	use	the	value	returned	from	the	CreatePoint	function.	A	function	can	have	any	number	of	inputs	(or	“arguments”)	including	zero.	Near	the	start	of	this	chapter,	we	saw	an	example
of	a	function	(CircleArea)	that	you	might	have	written	yourself:	Function	CircleArea(r	As	Double)	As	Double	Dim	pi	As	Double	=	3.14	Dim	area	As	Double	=	pi	*	r	*	r	Return	area	End	Function	Since	you	have	the	source	code	of	this	function,	you	could	just	use	this	code	directly,	instead	of	calling	the	function,	but	we	would	not	recommend	this
approach;	calling	functions	makes	your	code	less	repetitive,	easier	to	read,	and	easier	to	change.	The	general	pattern	for	a	function	definition	is:	Function	(arguments)	As	End	Function	Some	further	examples	are:	Unrestricted	Getting	Started	with	NX	Open	Chapter	4:	The	Visual	Basic	Language	Page	39	Function	RectangleArea(width	As	Double,
height	As	Double)	As	Double	'	Area	of	a	rectangle	Function	Average(m	As	Double,	n	As	Double)	As	Double	'	Average	of	two	numbers	Function	Average(values	As	Double())	As	Double	'	Avg	of	list	of	numbers	Function	Cube(center	As	Position,	size	As	Double)	As	NXOpen.Body	'	Create	a	cube	Note	that	it’s	perfectly	legal	to	have	several	functions	with	the
same	name,	provided	they	have	different	types	of	inputs.	This	technique	is	called	“overloading”,	and	the	function	name	is	said	to	be	“overloaded”.	For	example,	the	function	name	“Average”	is	overloaded	in	the	list	of	function	definitions	above.	When	you	call	the	function,	the	compiler	will	decide	which	overload	to	call	by	looking	at	the	types	of	inputs
you	provide.	■	Classes	In	addition	to	the	built-in	types	described	earlier,	Visual	Basic	allows	you	to	define	new	data	types	of	your	own.	The	definition	of	a	new	user-defined	data	type	is	held	in	a	block	of	code	called	a	class.	The	class	represents	a	generic	object,	and	a	specific	concrete	object	of	this	type	is	called	an	“instance”	of	the	class.	So,	for
example,	we	might	have	a	“Sphere”	class	that	represents	spheres	in	general,	and	the	specific	sphere	object	with	center	at	(0,0,0)	and	radius	=	3	would	be	an	instance	of	this	Sphere	class.	New	objects	defined	by	classes	have	fields,	properties	and	methods.	Fields	and	properties	can	be	considered	as	items	of	data	(like	the	radius	of	a	sphere),	and	a
method	is	a	function	that	does	something	useful	with	an	object	of	the	given	class	(like	calculating	the	volume	of	a	sphere).	Properties	are	described	in	the	next	section,	but,	for	now,	you	can	think	of	a	property	as	just	a	field	with	a	smarter	and	safer	implementation	—	it	provides	controlled	read/write	access	to	a	hidden	field.	A	class	typically	includes
one	or	more	functions	called	“constructors”	that	are	used	to	create	new	objects.	So,	a	typical	class	definition	might	look	like	this:	Public	Class	Ball	Public	Center	As	Position	Public	Radius	As	Double	'	Constructor,	Sub	New(center	Me.Center	=	Me.Radius	=	End	Sub	'	Field	to	hold	center	point	(should	be	a	property,	really)	'	Field	to	hold	radius	value
(should	be	a	property,	really)	given	a	position	and	a	radius	As	Position,	r	As	Double)	center	r	'	Constructor,	given	center	coordinates	and	radius	Sub	New(x	As	Double,	y	As	Double,	z	As	Double,	r	As	Double)	MyClass.New(New	Position(x,	y,	z),	r)	End	Sub	'	Function	(method)	to	calculate	volume	Public	Function	Volume()	As	Double	Return	(4	/	3)	*
System.Math.PI	*	Me.Radius	^	3	End	Function	'	Function	(method)	to	draw	a	ball	Public	Sub	Draw()	'	Code	omitted	End	Sub	End	Class	Note	that	the	constructors	are	“overloaded”	—	there	are	two	of	them,	with	different	inputs.	To	create	a	Ball	object,	you	call	a	constructor	using	the	New	keyword.	Properties	and	methods	are	both	accessed	using	a
“dot”	notation.	As	soon	as	you	type	a	period	in	Visual	Studio,	Intellisense	will	show	you	all	the	available	fields,	properties	and	methods.	Unrestricted	Getting	Started	with	NX	Open	Chapter	4:	The	Visual	Basic	Language	Page	40	In	this	class,	Center	and	Radius	are	both	public	fields,	so	you	can	access	them	directly.	It	would	be	safer	to	make	them
private	fields	and	provide	properties	to	access	them.	By	doing	this,	we	could	prevent	the	calling	code	from	making	balls	with	negative	radius,	for	example.	Code	to	use	the	Ball	class	looks	like	this:	Dim	myBall	As	New	Ball(x,	y,	z,	r)	myBall.Radius	=	10	Dim	mass	As	Double	=	density	*	myBall.Volume()	myBall.Draw	'	'	'	'	Create	a	ball	named	"myBall"
Change	its	Radius	property	(or	field)	Use	the	Volume	method	Display	the	ball	Note	that	the	first	line	of	code	uses	a	convenient	shorthand	notation.	The	full	form	would	have	been	Dim	myBall	As	Ball	=	New	Ball(x,	y,	z,	r)	Also,	note	how	empty	parentheses	can	simply	be	omitted	when	you	call	a	function	that	has	no	arguments:	so,	we	wrote	myBall.Draw
instead	of	myBall.Draw().	Similarly,	in	the	line	above,	we	could	have	just	written	myBall.Volume.	■	Shared	Functions	In	the	example	above,	we	had	a	class	called	“Ball”,	and	this	class	contained	functions	(methods)	like	Volume	and	Draw	that	operated	on	balls.	This	is	the	“object-oriented	programming”	view	of	life	—	the	world	is	composed	of	objects
that	have	methods	operating	on	them.	This	is	all	very	nice,	but	some	software	doesn't	fit	naturally	into	this	model.	Suppose	for	example	that	we	had	a	collection	of	functions	for	doing	financial	calculations	—	for	calculating	things	like	interest,	loan	payments,	and	so	on.	The	functions	might	have	names	like	SimpleInterest,	and	LoanPayment,	etc.	It
would	be	natural	to	gather	these	functions	together	in	a	class	named	FinanceCalculator.	But	the	situation	here	would	be	fundamentally	different	from	the	“ball”	class.	The	SimpleInterest	function	lives	in	the	FinanceCalculator	class,	but	it	doesn’t	operate	on	FinanceCalculator	objects.	Saying	it	another	way,	the	SimpleInterest	function	is	associated
with	the	FinanceCalculator	class	itself,	not	with	instances	of	the	FinanceCalculator	class.	Functions	like	this	are	called	“Shared”	functions	in	Visual	Basic	(or	“static”	functions	in	many	other	languages).	You	have	already	seen	this	word	many	times	before	because	the	“Main”	function	is	always	Shared.	By	contrast,	the	functions	Volume	and	Draw	in	the
Ball	class	are	called	Member	functions	or	Instance	functions.	So,	in	short,	the	FinanceCalculator	class	is	simply	a	collection	of	Shared	functions.	This	is	a	common	situation,	so	Visual	Basic	has	a	special	construct	to	support	it	—	a	class	that	consists	entirely	of	Shared	functions	is	called	a	Module.	Calls	to	Member	functions	and	Shared	functions	look
the	same	in	our	code,	but	they	are	conceptually	different.	For	example,	look	at:	Dim	myBall	As	New	Ball(x,	y,	z,	r)	Dim	v	As	Double	=	myBall.Volume()	Dim	payment	As	Double	=	FinanceCalculator.LoanPayment(20000,	4.5)	Both	the	second	and	third	lines	use	the	“dot”	notation	to	refer	to	a	function.	But,	in	these	two	cases,	the	thing	that	comes	before
the	“dot”	is	different.	In	myBall.Volume	on	the	second	line,	myBall	is	an	object	(of	type	Ball),	but	in	FinanceCalculator.LoanPayment	on	the	third	line,	FinanceCalculator	is	a	class.	■	Object	Properties	Each	type	of	object	we	create	in	a	VB	program	typically	has	a	set	of	“properties”	that	we	can	access.	For	example,	a	point	has	a	position	in	space,	an	arc
has	a	center	and	a	radius,	a	curve	has	a	length,	and	a	solid	body	has	a	density.	In	all	cases,	you	can	read	(or	“get”)	the	value	of	the	property,	and	in	many	cases,	you	can	also	write	(or	“set”)	the	value.	Setting	a	property	value	is	often	a	convenient	way	to	modify	an	object.	If	you	are	familiar	with	the	GRIP	language,	these	properties	are	exactly
analogous	to	GRIP	EDA	(entity	data	access)	symbols.	Each	property	has	a	name.	To	get	or	set	the	property,	you	use	a	“dot”	followed	by	the	name	of	the	property.	So,	if	myCircle	is	an	arc,	then	you	refer	to	its	center	as	myCircle.Center,	and	its	radius	as	myCircle.Radius.	Unrestricted	Getting	Started	with	NX	Open	Chapter	4:	The	Visual	Basic	Language
Page	41	If	p1,	p2,	p3	are	three	given	positions,	then	(conceptually)	we	can	write	code	like	this:	c1	=	Circle(p1,	p2,	p3)	r	=	c1.Radius	c1.Center	=	p2	'	Creates	a	circle	through	three	positions	p1,	p2,	p3	'	Gets	the	radius	of	the	circle	'	Moves	the	circle,	placing	its	center	at	position	p2	■	Hierarchy	&	Inheritance	Object	methods	and	properties	are
hierarchical.	In	addition	to	its	own	particular	properties,	a	given	object	also	has	all	the	properties	of	object	types	higher	up	in	the	object	hierarchy.	So,	for	example,	since	a	Line	is	a	kind	of	Curve,	it	has	all	the	properties	and	methods	of	the	Curve	type,	in	addition	to	the	particular	ones	of	lines.	We	say	that	the	Line	type	“inherits”	properties	and
methods	from	the	Curve	type.	A	portion	of	the	hierarchy	is	shown	below:	System.Object	Integer	Double	String	NXObject	Vector	Point	Curve	Body	Line	Arc	Spline	As	you	can	see,	every	object	is	derived	from	System.Object,	and	therefore	inherits	certain	mysterious	properties	from	it	(like	the	Finalize,	GetHashCode,	and	MemberwiseClone	functions).
The	tables	in	the	following	chapters	indicate	the	types	of	objects	we	will	be	using,	and	their	properties.	You	might	think	you	will	need	to	keep	these	tables	handy	as	you	are	writing	code,	so	that	you	know	what	properties	are	available.	But,	this	is	not	the	case	assuming	you	are	using	a	modern	IDE	(Integrated	Development	Environment)	to	write	your
code.	In	a	good	IDE	(like	Visual	Studio),	as	soon	as	you	type	a	dot,	a	list	of	available	properties	and	methods	will	appear,	and	all	you	have	to	do	is	choose	the	one	you	want.	Some	enthusiasts	like	to	say	that	“the	code	writes	itself”		Unrestricted	Getting	Started	with	NX	Open	Chapter	4:	The	Visual	Basic	Language	Page	42	Chapter	5:	Concepts	&
Architecture	This	chapter	describes	the	overall	structure	of	NX	Open,	and	some	of	the	underlying	principles.	The	standard	NX	Open	Reference	Guide	tells	you	how	to	call	any	of	the	thousands	of	functions	available	in	NX	Open,	but	many	people	find	it	hard	to	see	the	“big	picture”,	so	they	don’t	know	where	to	start.	This	chapter	explains	the	conceptual
model	behind	NX	Open	programming,	to	make	it	easier	to	find	the	functions	you	need.	■	The	Levels	of	NX	Open	The	programming	interfaces	for	NX	have	evolved	over	many	years.	Earlier	generations	are	still	supported	and	still	work,	even	though	they	have	been	superseded	by	newer	APIs	and	are	no	longer	being	enhanced.	These	older	tools	included
an	API	called	“User	Function”	or	“UFUNC”	that	was	designed	to	support	applications	written	in	the	Fortran	or	C	languages.	The	name	of	the	User	Function	C	API	was	subsequently	changed,	and	it	is	now	known	as	the	NX	Open	C	API,	or	sometimes	just	the	Open	C	API.	This	API	is	old-fashioned,	by	today’s	standards,	but	it	is	extremely	rich,	fairly	well
documented,	and	still	widely	used.	A	large	part	of	the	NX	Open	.NET	API	(a	portion	called	the	NXOpen.UF	namespace)	was	actually	created	by	building	“wrappers”	around	NX	Open	C	functions.	The	NXOpen.UF	functions	are	not	used	in	recorded	journals,	so	it’s	easy	to	forget	about	them,	but	they	are	very	useful.	Newer	NX	Open	.NET	functions	are
built	directly	on	top	of	internal	NX	functions,	so	they	by-pass	the	NX	Open	C	layer.	The	SNAP	layer	is	built	on	top	of	NX	Open	.NET.	SNAP	NX/Open	.NET	API	functions.	Some	of	these	(left)	call	User	Function	Others	(right)	call	NX	internal	functions	NX/Open	.NET	NX/Open	C	API	User	Function	NX	A	B	C	D	E	F	NX	internal	functions	■	More	About
NXOpen.UF	As	mentioned	above,	there	are	many	useful	functions	in	the	NXOpen.UF	namespace.	Some	examples	are:									NXOpen.UF.Curve:	many	functions	for	working	with	curves	NXOpen.UF.Disp:	display	functions	(colors,	grids,	view	names,	etc.)	NXOpen.UF.Draw:	functions	for	working	with	drawings	and	drawing	views	NXOpen.UF.Drf:
functions	for	working	with	drafting	objects	like	dimensions	NXOpen.UF.UFEval:	information	about	curves	and	surfaces	(points,	tangents,	normal,	etc.)	NXOpen.UF.UFModl:	a	large	number	of	part	modeling	functions	NXOpen.UF.UFPath:	functions	for	working	with	NC	toolpaths	NXOpen.UF.UFSf:	functions	for	working	with	finite	element	models
(nodes,	elements,	meshes)	You	can	use	these	functions	alongside	the	newer	functions,	but	mixing	requires	some	simple	conversions,	as	explained	later	in	this	chapter	in	the	section	entitled	“Objects	and	Tags”.	Unrestricted	Getting	Started	with	NX	Open	Chapter	5:	Concepts	&	Architecture	Page	43	■	The	NX	Open	Inheritance	Hierarchy	As	in	most
modern	software	systems,	NX	object	classes	are	arranged	in	a	hierarchical	structure,	with	lower-level	items	inheriting	from	higher-level	ones.	There	are	hundreds	of	different	object	types,	so	the	complete	picture	is	difficult	to	understand	(or	even	to	draw).	The	simplified	diagram	below	shows	us	the	path	from	the	top	of	the	hierarchy	down	to	some	of
the	simple	commonly-used	objects.	NXRemotableObject	TaggedObject	NXObject	So,	we	see	that	a	Point	is	a	kind	of	“SmartObject”,	which	is	a	kind	of	“DisplayableObject”,	and	so	on.	The	details	are	given	later,	but	briefly,	here	are	the	roles	of	the	more	important	object	types:	DisplayableObject	Body	DatumAxis	DatumPlane	Edge	Face	FacetedBody
Sketch	SmartObject	Point	Curve	Line	Conic	RemotableObject	Used	for	collections	of	preferences	and	also	as	the	basis	of	the	“UF”	classes	TaggedObject	Used	for	lists	of	objects,	for	selections,	and	for	“builders”	(to	be	described	later)	Arc	Ellipse	Spline	CoordinateSystem	Axis	Direction	Plane	Scalar	Xform	Feature	BodyFeature	Sphere	NXMatrix
Expression	BasePart	Part	Builder	FourPointSurfaceBuilder	FeatureBuilder	BooleanBuilder	SphereBuilder	NXObject	Used	for	Part	objects,	and	for	objects	that	live	inside	NX	part	files,	but	are	not	displayed	—	views,	layouts,	expressions,	lights,	and	so	on.	NXObjects	have	names	and	other	non-graphical	attributes.	DisplayableObject	Includes	most	of	the
object	types	familiar	to	users.	Things	like	annotations,	bodies,	facetted	bodies,	datum	objects,	CAE	objects.	Displayable	objects	have	colors,	fonts,	and	other	appearance	attributes.	Note	that	NX	features	are	not	displayable	objects.	SmartObject	Includes	points,	curves,	and	some	object	types	used	as	components	of	other	objects	when	implementing
associativity.	BaseSession	Session	TaggedObjectCollection	BaseFeatureCollection	PartCollection	FeatureCollection	MathUtils	■	Sessions	and	Parts	Typical	NX	objects	(the	ones	we’re	discussing,	here,	anyway)	reside	in	part	files.	So,	if	we	want	to	create	a	new	object,	the	first	thing	we	must	do	is	identify	a	part	file	in	which	this	object	will	be	created.
Very	often,	you	will	want	to	create	new	objects	in	the	current	work	part,	so	the	required	code	is:	Dim	mySession	As	NXOpen.Session	=	NXOpen.Session.GetSession	Dim	parts	As	NXOpen.PartCollection	=	mySession.Parts	Dim	workPart	As	NXOpen.Part	=	parts.Work	'	Get	the	current	NX	session	'	Get	the	session's	PartCollection	'	Get	the	Work	Part	As
you	can	see,	we	first	get	the	current	NX	session	object	by	calling	the	GetSession	function.	Every	session	object	has	a	PartCollection	object	called	“Parts”	which	we	obtained	in	the	second	line	of	code.	Then	we	get	the	Work	Part	Unrestricted	Getting	Started	with	NX	Open	Chapter	5:	Concepts	&	Architecture	Page	44	from	this	PartCollection.	Of	course,
as	always,	we	could	have	reduced	our	typing	by	putting	Imports	NXOpen	at	the	top	of	our	code	file.	In	addition	to	the	Work	Part,	there	are	other	useful	objects	that	you	will	probably	want	to	initialize	at	the	beginning	of	your	program.	Examples	are	the	Display	Part,	the	“UI”	object,	the	“Display”	object,	the	UFSession	object,	and	so	on.	So,	you	will	see
code	like	this	near	the	top	of	many	NX	Open	programs:	Dim	Dim	Dim	Dim	Dim	Dim	theSession	As	NXOpen.Session	=	NXOpen.Session.GetSession	theWorkPart	As	NXOpen.Part	=	theSession.Parts.Work	theDisplayPart	As	NXOpen.Part	=	parts.Display	theUfSession	As	NXOpen.UF.UFSession	=	NXOpen.UF.UFSession.GetUFSession	theDisplay	As
NXOpen.DisplayManager	=	theSession.DisplayManager	theUI	As	NXOpen.UI	=	NXOpen.UI.GetUI	■	Objects	and	Tags	As	we	mentioned	earlier,	there	are	many	useful	functions	in	the	NXOpen.UF	namespace.	But	the	NXOpen.UF	functions	do	not	use	the	object	types	described	earlier;	they	use	object	“tags”	instead.	Typical	code	looks	like	this:	Dim
coords	As	Double()	=	{	1.5,	2.5,	7	}	Dim	pointTag	As	NXOpen.Tag	theUfSession.Curve.CreatePoint(coords,	pointTag)	theUfSession.Obj.SetLayer(pointTag,	30)	Notice	how	the	CreatePoint	function	does	not	return	an	NXOpen.Point	object,	it	returns	the	NXOpen.Tag	(pointTag)	of	the	point	it	created.	Then,	whenever	we	want	to	refer	to	this	point	in
subsequent	code,	we	use	this	tag.	So,	for	example,	in	the	last	line	of	code,	pointTag	is	used	as	input	to	the	SetLayer	function.	We	can	contrast	this	with	code	that	does	the	same	operations	using	newer	object-based	functions:	Dim	coordsPt	As	New	NXOpen.Point3d(1.5,	2.5,	7)	Dim	myPoint	As	NXOpen.Point	=	theWorkPart.Points.CreatePoint(coordsPt)
myPoint.Layer	=	30	Of	course,	there	will	be	times	when	you	want	to	use	a	mixture	of	NXOpen.UF	functions	and	newer	ones,	so	it’s	important	to	understand	how	objects	and	tags	relate	to	one	another.	In	one	direction,	the	correspondence	is	very	simple:	if	you	have	an	NX	object	called	myObject,	then	myObject.Tag	gives	you	its	tag.	So,	we	could	do
this:	Dim	myPoint	As	NXOpen.Point	=	theWorkPart.Points.CreatePoint(coordsPt)	Dim	pointTag	As	NXOpen.Tag	=	myPoint.Tag	theUfSession.Obj.SetLayer(pointTag,	30)	In	the	opposite	direction	(from	tag	to	object),	the	process	is	slightly	more	complicated:	Dim	pointTag	As	NXOpen.Tag	theUfSession.Curve.CreatePoint(coords,	pointTag)	Dim	obj	As
NXOpen.TaggedObject	=	NXOpen.Utilities.NXObjectManager.Get(pointTag)	Dim	myPoint	As	NXOpen.Point	=	CType(obj,	NXOpen.Point)	myPoint.Layer	=	30	As	you	can	see,	calling	the	NXObjectManager.Get	function	gives	us	an	NXOpen.TaggedObject,	and	then	we	cast	this	to	type	NXOpen.Point.	In	practice,	you	would	probably	shorten	this	by	using
an	implicit	cast,	like	this:	Dim	myPoint	As	NXOpen.Point	=	NXOpen.Utilities.NXObjectManager.Get(pointTag)	Unrestricted	Getting	Started	with	NX	Open	Chapter	5:	Concepts	&	Architecture	Page	45	■	Factory	Objects	In	NX	Open,	an	object	is	usually	not	created	by	calling	a	constructor	function.	Instead,	you	use	a	“create”	function	that	is	a	member
function	of	some	“factory”	object.	The	“factory”	concept	is	well-known	in	the	software	engineering	field	—	just	as	in	real	life,	a	factory	is	a	place	where	you	produce	new	items.	Different	types	of	objects	use	different	types	of	factories.	Typically	you	can	get	a	suitable	factory	object	from	an	NXOpen.Part	object	(usually	the	work	part),	or	from	an
NXOpen.Session	object.	So,	suppose	for	example,	that	we	want	to	create	a	point	in	a	part	named	myPart.	The	relevant	factory	object	is	a	PointCollection	object	called	myPart.Points.	So,	the	CreatePoint	function	can	be	found	in	the	PointCollection	class,	and	you	use	it	as	follows	to	create	a	point:	Dim	coords	As	new	Point3d(3,	5,	0)	Dim	points	As
PointCollection	=	myPart.Points	Dim	p1	As	Point	=	points.CreatePoint(coords)	'	Define	coordinates	of	point	'	Get	the	PointCollection	of	the	myPart	'	Create	the	point	Sometimes	the	factory	object	provides	functions	for	directly	creating	objects,	as	in	the	example	above.	Other	times,	the	factory	object	provides	functions	for	creating	“builder”	objects,
instead,	as	discussed	in	the	next	section.	The	following	table	shows	some	common	examples	of	factory	objects,	how	you	obtain	instances	of	these	factory	objects,	and	what	sorts	of	creation	functions	they	provide:	Type	of	Factory	Object	Instance	of	Factory	Object	Example	Creation	Functions	PointCollection	BasePart.Points	CreatePoint
CreateQuadrantPoint	CurveCollection	BasePart.Curves	CreateLine	CreateArc	CreateEllipse	Features.FeatureCollection	Part.Features	CreateSphereBuilder	CreateDatumPlaneBuilder	CreateExtrudeBuilder	CreateStudioSplineBuilder	Annotations.AnnotationManager	Part.Annotations	CreateNote	CreateLabel	CreateDraftingNoteBuilder
CAE.NodeElementManager	CAE.BaseFEModel.NodeElementMgr	CreateNodeCreateBuilder	CreateElementCreateBuilder	CAM.OperationCollection	CAM.CAMSetup.CAMOperationCollection	CreateHoleMakingBuilder	CreateFaceMillingBuilder	CAM.NCGroupCollection.	CAM.CAMSetup.CAMGroupCollection	CreateMillToolBuilder
CreateDrillSpotfaceToolBuilder	DexManager	Session.DexManager	CreateIgesImporter	CreateStep203Creator	PlotManager	BasePart.PlotManager	CreateCgmBuilder	CreatePrintBuilder	Unrestricted	Getting	Started	with	NX	Open	Chapter	5:	Concepts	&	Architecture	Page	46	Here	are	some	further	examples	showing	factory	objects	and	their	simple
creation	functions:	Dim	coords	As	New	NXOpen.Point3d(3,	5,	9)	Dim	pointFactory	As	NXOpen.PointCollection	=	workPart.Points	Dim	myPoint	=	pointFactory.CreatePoint(coords)	Dim	Dim	Dim	Dim	p1	As	New	NXOpen.Point3d(1,	6,	5)	p2	As	New	NXOpen.Point3d(3,	2,	7)	curveFactory	As	NXOpen.CurveCollection	=	workPart.Curves	myLine	=
curveFactory.CreateLine(p1,	p2)	Dim	text	As	String()	=	{	"Height",	"Diameter",	"Cost"	}	Dim	origin	As	New	NXOpen.Point3d(3,8,0)	Dim	horiz	As	NXOpen.AxisOrientation	=	NXOpen.AxisOrientation.Horizontal	Dim	noteFactory	As	NXOpen.Annotations.AnnotationManager	noteFactory	=	workPart.Annotations	Dim	myNote	=
noteFactory.CreateNote(text,	origin,	horiz,	Nothing,	Nothing)	In	this	code,	we	have	explicitly	defined	the	factory	objects,	to	emphasize	the	role	that	they	play.	But,	in	typical	code,	they	would	not	be	mentioned	explicitly,	and	you’d	just	write:	Dim	myPoint	=	workPart.Points.CreatePoint(coords)	Dim	myLine	=	workPart.Curves.CreateLine(p1,	p2)	Dim
myNote	=	workPart.Annotations.CreateNote(text,	origin,	horiz,	Nothing,	Nothing)	■	Object	Collections	In	many	cases,	the	factory	object	described	in	the	previous	section	has	the	word	“collection”	in	its	name.	This	is	because,	in	addition	to	its	object	creation	duties,	the	factory	object	also	provides	us	with	a	way	of	cycling	through	objects	of	a	specific
type	in	a	part	file.	This	is	useful	if	you	want	to	cycle	through	the	objects,	performing	some	operation	on	each	of	them.	For	example,	to	perform	some	operation	on	all	the	points	in	a	given	part	file	(myPart)	you	can	write:	For	Each	pt	As	Point	In	myPart.Points	'	Do	something	with	pt	Next	Speaking	more	formally,	the	PointCollection	class	implements	the
IEnumerable	interface,	which	means	it’s	a	collection	of	items	that	you	can	cycle	through	using	a	For	Each	loop.	■	The	Builder	Pattern	We	saw	above	how	various	factory	objects	provide	functions	like	CreatePoint,	CreateLine,	and	CreateNote	that	let	us	create	simple	objects	directly.	However,	if	we	tried	to	handle	more	complex	objects	this	way,	we
would	need	creation	functions	with	huge	numbers	of	input	arguments.	To	avoid	this	complexity,	we	first	create	a	“builder”	object,	and	then	we	use	this	to	create	the	object	we	want.	As	an	example,	here	is	the	code	to	build	a	sphere	feature:	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	Dim	nullSphere	As	NXOpen.Features.Sphere	=	Nothing	Dim	mySphereBuilder	As
NXOpen.Features.SphereBuilder	mySphereBuilder	=	workPart.Features.CreateSphereBuilder(nullSphere)	mySphereBuilder.Type	=	mySphereBuilder.Center	=	mySphereBuilder.Diameter	=	mySphereBuilder.BooleanOption.Type	=	Dim	myObject	As	NXOpen.NXObject	=	mySphereBuilder.Commit	mySphereBuilder.Destroy	Unrestricted	Getting
Started	with	NX	Open	Chapter	5:	Concepts	&	Architecture	Page	47	The	code	uses	the	so-called	“Builder	Pattern”,	which	is	a	well-known	software	engineering	technique	for	creating	complex	objects.	The	general	approach	is	to		Create	a	“builder”	object	—	line	[3]		Modify	its	properties	as	desired	—	lines	[4],	[5],	[6],	[7]		“Commit”	the	builder	to	create
a	new	object	—	line	[8]	So,	as	we	can	see,	along	with	the	Sphere	class,	there	is	a	corresponding	SphereBuilder	class,	and	a	function	called	CreateSphereBuilder	that	produces	a	basic	SphereBuilder	object.	The	NX	Open	Reference	Guide	will	help	you	find	the	classes	and	functions	you	need.	Specifically					The	Sphere	class	refers	you	to	the
SphereBuilder	class	The	SphereBuilder	class	refers	you	to	the	CreateSphereBuilder	function	The	CreateSphereBuilder	function	indicates	that	it	is	provided	by	the	factory	class	“FeatureCollection”	The	FeatureCollection	class	tells	you	to	obtain	an	instance	from	a	Part	object	(e.g.	workPart.Features)	You	can	actually	use	the	CreateSphereBuilder
function	for	either	creation	or	editing	purposes:	if	you	input	an	existing	Sphere	object,	then	the	Commit	method	will	edit	this	sphere;	if	you	input	Nothing,	then	the	Commit	method	will	create	a	new	sphere	object,	as	in	our	code	above.	The	meanings	of	the	various	builder	properties	that	you	need	to	set	are	fairly	obvious	in	this	simple	case.	But,

whenever	you’re	in	doubt	about	the	meaning	of	a	builder	property,	you	can	look	at	the	corresponding	feature	creation	dialog	in	interactive	NX.	You	will	see	that	the	builder	properties	are	closely	related	to	the	options	that	appear	in	the	dialog.	builder.Type	=	Features.SphereBuilder.Types.CenterPointAndDiameter	builder.CenterPoint	=	centerPoint
builder.Diameter.RightHandSide	=	diamString	builder.BooleanOption.Type	=	NXOpen.GeometricUtilities.BooleanOperation.BooleanType.Create	The	Commit	function	returns	an	NXOpen.NXObject,	which	is	not	immediately	useful,	in	most	situations.	You	typically	have	to	cast	to	a	more	specific	type	(NXOpen.Features.Sphere	in	our	example	above)
before	making	further	use	of	the	object.	Builders	for	“feature”	objects	also	have	a	CommitFeature	method.	This	returns	a	very	general	NXOpen.Features.Feature	object,	so	a	cast	will	still	be	necessary	in	many	cases.	You	can	either	perform	the	cast	explicitly,	or	do	it	implicitly	with	an	assignment	statement,	as	shown	here:	'	Two	steps:	commit	and
explicit	cast	Dim	myObject	As	NXOpen.Features.Sphere	=	builder.Commit	Dim	mySphere1	As	NXOpen.Features.Sphere	=	CType(myObject,	NXOpen.Features.Sphere)	'	One	step:	commit	and	cast	implicitly	Dim	mySphere2	As	NXOpen.Features.Sphere	=	builder.CommitFeature	In	some	cases,	both	the	Commit	and	CommitFeature	methods	return
Nothing,	and	you	have	to	use	the	GetCommittedObjects	function	to	obtain	the	created	object(s).	Unrestricted	Getting	Started	with	NX	Open	Chapter	5:	Concepts	&	Architecture	Page	48	■	Exploring	NX	Open	By	Journaling	The	NX	Open	API	is	very	rich	and	deep	—	it	has	thousands	of	available	functions.	This	richness	sometimes	makes	it	difficult	to
find	the	functions	you	need.	Fortunately,	if	you	know	how	to	use	the	corresponding	interactive	function	in	NX,	the	journaling	facility	will	tell	you	which	NX	Open	functions	to	use,	and	will	even	write	some	sample	code	for	you.	You	choose	Developer	tab		Journal		Record	to	start	recording,	run	through	the	desired	series	of	steps,	and	then	choose
Developer	tab		Journal		Stop	Recording.	The	code	generated	by	journaling	is	verbose	and	is	often	difficult	to	read.	But	it’s	worth	persevering,	because	hidden	within	that	code	is	an	example	call	showing	you	exactly	the	function	you	need.	You	can	indicate	which	language	should	be	used	in	the	recorded	code	by	choosing	File	tab		Preferences		User
Interface		Tools		Journal.	The	available	choices	are	C#,	C++,	Java,	Python,	and	Visual	Basic.	■	The	“FindObject”	Problem	When	you	use	a	journal	as	the	starting-point	for	an	application	program,	one	of	the	things	you	need	to	do	is	remove	the	“FindObject”	calls	that	journaling	produces.	This	section	tells	you	how	to	do	this.	A	journal	records	the	exact
events	that	you	performed	during	the	recording	process.	If	you	select	an	object	during	the	recording	process,	and	do	some	operations	on	it,	the	journal	actually	records	the	name	of	that	object.	So,	when	you	replay	the	journal,	the	operations	will	again	be	applied	to	this	same	named	object.	This	is	almost	certainly	not	what	you	want	—	you	probably
want	to	operate	on	some	newly-selected	object,	not	on	the	one	you	selected	during	journal	recording.	Very	often,	objects	with	the	original	recorded	names	don’t	even	exist	when	you	are	replaying	the	journal,	so	you’ll	get	error	messages.	To	clarify	further,	let’s	take	a	specific	example.	Suppose	your	model	has	two	objects	in	it	—	two	spheres	named
SPHERE(23)	and	SPHERE(24).	If	you	record	a	journal	in	which	you	select	all	objects	in	your	model,	and	then	blank	them,	then	what	gets	recorded	in	the	journal	will	be	something	like	this:	Dim	objects1(1)	As	DisplayableObject	Dim	body1	As	Body	=	CType(workPart.Bodies.FindObject("SPHERE(23)"),	Body)	objects1(0)	=	body1	Dim	body2	As	Body	=
CType(workPart.Bodies.FindObject("SPHERE(24)"),	Body)	objects1(1)	=	body2	theSession.DisplayManager.BlankObjects(objects1)	If	you	replay	this	code,	it’s	just	going	to	try	to	blank	SPHERE(23)	and	SPHERE(24)	again,	which	is	probably	useless.	There’s	a	good	chance	that	SPHERE	(23)	and	SPHERE	(24)	won’t	exist	at	the	time	when	you’re
replaying	the	journal,	and,	even	if	they	do,	it’s	not	likely	that	these	are	the	objects	you	want	to	blank.	Clearly	we	need	to	get	rid	of	the	“FindObject”	calls,	and	add	some	logic	that	better	defines	the	set	of	objects	we	want	to	blank.	There	are	a	few	likely	scenarios:		Maybe	we	want	to	blank	some	objects	that	were	created	by	code	earlier	in	our
application		Maybe	we	want	to	blank	some	objects	selected	by	the	user	when	our	application	runs		Maybe	we	want	to	blank	all	objects	in	the	model,	or	all	the	objects	that	have	certain	characteristics	The	first	of	these	is	easy:	if	we	created	the	objects	in	our	own	code,	then	presumably	we	assigned	them	to	program	variables,	and	they	are	easy	to
identify:	Dim	myBall0	As	NX.Body	=	Sphere(1,2,1,	5).Body	Dim	myBall1	As	NX.Body	=	Sphere(1,4,3,	7).Body	Dim	objects1(1)	As	DisplayableObject	objects1(0)	=	myBall0	objects1(1)	=	myBall1	theSession.DisplayManager.BlankObjects(objects1)	For	the	second	case,	we	need	to	add	a	selection	step	to	our	code	as	outlined	in	chapter	15,	and	then	blank
the	objects	the	user	selects	when	the	journal	is	replayed.	Something	like	this:	Unrestricted	Getting	Started	with	NX	Open	Chapter	5:	Concepts	&	Architecture	Page	49	Dim	cue	=	"Please	select	the	objects	to	be	blanked"	Dim	dialog	As	Selection.Dialog	=	Selection.SelectObjects(cue)	Dim	result	As	Selection.Result	=	dialog.Show	If	result.Response
NXOpen.Selection.Response.Cancel	Then	theSession.DisplayManager.BlankObjects(result.Objects)	End	If	For	the	third	case	(blanking	all	the	objects	with	certain	characteristics),	we	will	need	to	cycle	through	all	the	objects	in	our	model,	finding	the	ones	that	meet	our	criteria,	and	then	pass	these	to	the	BlankObjects	function.	See	the	last	section	in
chapter	15	for	information	about	cycling	through	the	objects	in	a	part	file.	■	Mixing	SNAP	and	NX	Open	As	we	have	seen,	NX	Open	functions	provide	enormous	power	and	flexibility.	There	is	another	NX	API	called	SNAP	whose	functions	are	usually	much	easier	to	find	and	understand.	So,	there	may	well	be	situations	where	you	will	want	to	use	SNAP
and	NX	Open	functions	together.	You	can	use	SNAP	functions	for	simple	common	operations,	and	NX	Open	functions	for	more	complex	ones.	To	do	this,	you	may	need	to	convert	SNAP	objects	into	NX	Open	objects,	and	vice-versa.	We	have	tried	to	make	these	conversions	as	convenient	as	possible,	so	that	SNAP	and	NX	Open	code	can	live	together	in
peace	and	harmony.	A	SNAP	object	is	just	a	simple	wrapper	around	a	corresponding	NX	Open	object	—	for	example,	a	Snap.NX.Spline	object	is	just	a	wrapper	that	encloses	an	NXOpen.Spline,	and	a	Snap.NX.Sphere	is	a	wrapper	around	an	NXOpen.Features.Sphere	object,	and	so	on.	So,	if	you	have	an	NXOpen	object,	you	can	“wrap”	it	to	create	a
Snap.NX	object.	In	the	other	direction,	if	you	have	a	Snap.NX	object,	you	can	“unwrap”	it	to	get	the	NXOpen	object	that	it	encloses.	There	are	hidden	“implicit”	conversions	that	do	this	wrapping	and	unwrapping	for	you,	so	often	things	just	work	without	any	extra	effort.	For	example:	Dim	snapPoint	As	Snap.NX.Point	=	Point(3,5,9)	Dim	session	As
NXOpen.Session	=	NXOpen.Session.GetSession	session.Information.DisplayPointDetails(snapPoint)	Dim	pt	As	NXOpen.Point3d	=	snapPoint.Position	In	the	third	line,	we	are	passing	a	Snap.NX.Point	object	to	a	function	that	expects	to	receive	an	NXOpen.Point.	But	the	implicit	conversion	is	invoked	behind	the	scenes,	and	the	function	call	just	works	as
expected.	Similarly,	in	the	fourth	line,	we	are	assigning	a	Snap.Position	object	to	an	NXOpen.Point3d	object,	and	this	works,	too.	However,	there	are	times	when	the	implicit	conversions	don’t	work,	and	you	need	to	do	something	more	explicit.	For	example,	if	you	want	to	use	NXOpen	member	functions	or	properties,	then	you	have	to	get	an	NXOpen
object	from	your	SNAP	object	first.	So	suppose,	for	example,	that	we	have	a	Snap.NX.Sphere	object	called	snapSphere,	and	we	write	the	following	code:	snapSphere.HideParents	Dim	version	=	snapSphere.TimeStamp	'	Fails	'	Fails	Both	lines	of	code	will	fail,	because	a	Snap.NX.Sphere	object	does	not	have	a	HideParents	method	or	a	TimeStamp
property.	So,	to	proceed,	you	have	to	“unwrap”	to	get	the	enclosed	NXOpen.Features.Sphere	object.	You	can	do	this	in	a	couple	of	different	ways,	as	shown	below:	CType(snapSphere,	NXOpen.Features.Sphere).HideParents	snapSphere.NXOpenSphere.HideParents	'	Works,	but	a	bit	clumsy	'	Nicer:	use	NXOpenSphere	property	The	first	line	just	uses
the	standard	VB	CType	function	to	do	the	conversion,	and	the	second	line	uses	the	NXOpenSphere	property.	The	second	approach,	using	properties,	is	the	most	convenient,	so	there	are	several	Unrestricted	Getting	Started	with	NX	Open	Chapter	5:	Concepts	&	Architecture	Page	50	properties	that	let	you	get	NXOpen	objects	from	SNAP	objects	in	this
same	way.	For	example,	if	snapSphere	is	a	Snap.NX.Sphere	object,	again,	then		snapSphere.NXOpenSphere	is	the	enclosed	NXOpen.Features.Sphere	object		snapSphere.NXOpenTag	is	the	NXOpen	tag	of	this	NXOpen.Features.Sphere	object		snapSphere.SphereBuilder	is	the	“builder”	object	for	the	NXOpen.Features.Sphere	Going	in	the	other
direction	(from	NXOpen	to	SNAP)	is	not	quite	so	streamlined.	The	approach	using	properties	is	not	available,	so	you	have	to	call	the	Wrap	function	to	create	a	new	SNAP	object	from	the	NXOpen	one,	like	this:	Dim	Dim	Dim	Dim	Dim	coords	=	New	NXOpen.Point3d(3,	6,	8)	workPart	As	NXOpen.Part	=	Snap.Globals.WorkPart.NXOpenPart	nxopenPoint
As	NXOpen.Point	=	workPart.Points.CreatePoint(coords)	snapPoint	As	NX.Point	=	NX.Point.Wrap(nxopenPoint.Tag)	'	Create	a	Snap.NX.Point	location	As	Position	=	snapPoint.Position	'	Use	its	Position	property	In	the	fourth	line	of	code,	we	first	get	the	tag	of	the	NXOpen.Point	object.	Then	we	call	the	Wrap	function,	which	gives	us	a	new
Snap.NX.Point	object	that	“wraps”	it.	Then,	in	the	last	line,	we	can	use	the	Position	property	of	this	new	Snap.NX.Point	object.	As	we	saw	above,	the	Wrap	function	receives	an	NXOpen.Tag	as	input.	So,	if	you	are	working	with	older	NXOpen	functions	that	use	tags,	interoperability	with	SNAP	is	even	easier.	For	example:	Dim	ufSession	=
NXOpen.UF.UFSession.GetUFSession	Dim	pointTag	As	NXOpen.Tag	Dim	coords	As	Double()	=	{2,	6,	9}	ufSession.Curve.CreatePoint(coords,	ByRef	pointTag)	Dim	snapPoint	As	NX.Point	=	NX.Point.Wrap(pointTag)	Unrestricted	Getting	Started	with	NX	Open	Chapter	5:	Concepts	&	Architecture	Page	51	Chapter	6:	Positions,	Vectors,	and	Points	The
next	few	chapters	briefly	outline	the	NX	Open	functions	available	for	performing	simple	tasks.	The	function	descriptions	are	fairly	brief,	since	we	are	just	trying	to	show	you	the	range	of	functions	available.	The	NX	Open	Reference	Guide	has	much	more	detailed	information,	and	this	detailed	information	will	also	be	presented	to	you	as	you	are	writing
your	code,	if	you	use	a	good	development	environment	like	Visual	Studio.	Specifically,	as	soon	as	you	type	an	opening	parenthesis	following	a	function	name,	a	list	of	function	inputs	will	appear,	together	with	descriptions.	You	can	also	get	complete	information	about	any	function	or	object	by	using	the	Object	Browser	in	Visual	Studio.	Following	the
descriptions	of	functions,	we	often	give	small	fragments	of	example	code,	showing	how	the	functions	can	be	used.	The	examples	are	very	simple,	but	they	should	still	be	helpful.	To	keep	things	brief,	the	example	code	is	often	not	complete.	For	example,	declarations	are	often	left	out,	and	a	complete	Main	function	is	only	included	very	rarely.	If	you
actually	want	to	compile	the	example	code,	you	will	typically	need	to	make	some	additions.	■	Point3d	Objects	A	Point3d	object	represents	a	location	in	3D	space.	After	basic	numbers,	positions	and	vectors	are	the	most	fundamental	objects	in	geometry	applications,	so	we	will	describe	them	first.	There	are	also	Point2d	and	Point4d	objects,	but	these
are	not	used	as	often,	so	we	won’t	discuss	them	here.	Note	that	a	Point3d	is	not	a	real	NX	object.	Point3d	objects	only	exist	in	your	NX	Open	program	—	they	are	not	stored	permanently	in	your	NX	model	(or	anywhere	else).	So,	as	soon	as	your	program	has	finished	running,	all	your	Point3d	objects	are	gone.	In	this	sense,	they	are	just	like	the
numerical	variables	that	you	use	in	your	programs.	If	you	want	to	create	a	permanent	NX	object	to	record	a	location,	you	should	use	an	NXOpen.Point,	not	a	Point3d.	You	can	use	the	following	function	to	create	a	Point3d	object:	Function	Inputs	and	Creation	Method	Point3d(x	As	Double,	y	As	Double,	z	As	Double)	From	three	rectangular	coordinates.
In	the	first	column,	you	see	a	formal	description	of	the	types	of	inputs	you	should	provide	when	calling	the	function	—	you	have	to	provide	three	variables	of	type	“double”.	This	function	is	a	constructor,	so,	when	calling	it,	we	have	to	use	the	“New”	keyword	in	our	code.	Here	are	some	examples:	Dim	p	As	New	Point3d(3,5,8)	Dim	q	As	New	Point3d
(1.7,	2.9,	0)	'	Creates	a	Point3d	"p"	with	coordinates	(3,5,8)	'	Creates	a	Point3d	"q"	with	coordinates	(1.7,	2.9,	0)	Point3d	object	properties	are	as	follows:	Data	Type	Property	Access	Description	Double	X	get,	set	The	x-coordinate	of	the	Point3d	Double	Y	get,	set	The	y-coordinate	of	the	Point3d	Double	Z	get,	set	The	z-coordinate	of	the	Point3d
Unrestricted	Getting	Started	with	NX	Open	Chapter	6:	Positions,	Vectors,	and	Points	Page	52	■	Vector3d	Objects	A	Vector3d	object	represents	a	direction	or	a	displacement	in	3D	space.	Like	Point3d	objects,	Vector3d	objects	only	exist	in	your	NX	Open	program	—	they	are	not	stored	permanently	in	your	NX	model	(or	anywhere	else).	You	can	use	the
following	constructor	function	to	create	Vector3d	objects:	Function	Inputs	and	Creation	Method	Vector3d(x	As	Double,	y	As	Double,	z	As	Double)	From	three	rectangular	components.	Vector	object	properties	are	as	follows:	Data	Type	Property	Access	Description	Double	X	get,	set	The	x-component	of	the	vector	Double	Y	get,	set	The	y-component	of
the	vector	Double	Z	get,	set	The	z-component	of	the	vector	The	NXOpen.VectorArithmetic	class	provides	a	Vector3	object	that	is	very	similar	to	NXOpen.Vector3d.	This	class	also	provides	functions	for	performing	operations	on	Vector3	objects,	like	addition,	subtraction,	cross	products,	and	so	on.	In	some	cases,	it	might	be	convenient	to	use	Vector3
objects	for	calculations,	and	then	convert	the	answers	to	NXOpen.Vector3d	form	for	further	use.	The	following	code	illustrates	the	approach:	Dim	Dim	Dim	Dim	u	v	w	r	=	=	=	=	New	New	u	+	New	NXOpen.VectorArithmetic.Vector3(3,4,7)	NXOpen.VectorArithmetic.Vector3(4,2,1)	0.5*v	NXOpen.Vector3d(w.x,	w.y,	w.z)	■	Points	Points	might	seem	a	lot
like	Point3d	objects,	but	they	are	quite	different.	A	Point	is	an	NX	object,	which	is	permanently	stored	in	an	NX	part	file;	Point3d	and	Vector3d	objects	are	temporary	things	that	exist	only	while	your	NX	Open	program	is	running.	To	create	a	point,	we	write	code	following	the	“factory”	pattern	explained	in	chapter	5.	The	basic	idea	is	that	a	part	file
contains	“collections”	of	different	object	types.	So,	for	example,	given	a	Part	object	named	myPart,	there	is	a	collection	called	myPart.Points	that	contains	all	the	Point	objects	in	the	part.	Similarly,	myPart.Arcs	is	a	collection	that	contains	all	the	arcs	in	this	part,	and	myPart.Curves	includes	all	the	curves.	These	collections	serve	as	“factory”	objects
that	we	can	use	to	create	new	objects	in	a	part	file,	as	follows:	Dim	workPart	As	Part	=	session.Parts.Work	'	Dim	points	As	PointCollection	=	workPart.Points	'	Dim	coords	As	new	Point3d(3,	5,	0)	'	Dim	p1	As	Point	=	points.CreatePoint(coords)	'	p1.SetVisibility(SmartObject.VisibilityOption.Visible)	Get	the	Work	Part	Get	the	PointCollection	of	the	Work
Part	Define	coordinates	of	point	Create	the	point	(add	to	collection)	The	last	line	of	code	is	necessary	because	an	NXOpen.Point	is	a	“SmartObject”,	which	is	invisible	by	default.	The	code	above	is	written	out	in	a	rather	verbose	way,	to	allow	for	complete	explanation.	In	practice,	you	would	typically	write	something	like	this:	Dim	workPart	As	Part	=
session.Parts.Work	Dim	coords	As	new	Point3d(3,	5,	0)	Dim	p1	As	Point	=	workPart.Points.CreatePoint(coords)	p1.SetVisibility(SmartObject.VisibilityOption.Visible)	Unrestricted	Getting	Started	with	NX	Open	'	'	'	'	Chapter	6:	Positions,	Vectors,	and	Points	Get	the	Work	Part	Define	coordinates	of	point	Create	the	point	Make	it	visible	Page	53	If	you’re
inclined,	you	could	even	create	a	point	with	a	single	line	of	code,	like	this:	Dim	p1	=	NXOpen.Session.GetSession.Parts.Work.Points.CreatePoint(New	Point3d(3,5,0))	So,	in	summary,	the	following	function	creates	a	point	in	a	part	called	myPart:	Function	Inputs	and	Creation	Method	myPart.Points.CreatePoint(x	As	Double,	y	As	Double,	z	As	Double)
From	x,	y,	z	coordinates	The	properties	of	Point	objects	are	as	follows:	Data	Type	Property	Access	Description	Double	X	get,	set	The	x-coordinate	of	the	point.	Double	Y	get,	set	The	y-coordinate	of	the	point.	Double	Z	get,	set	The	z-coordinate	of	the	point.	There	are	many	functions	that	require	Point3d	objects	as	inputs.	If	we	have	a	Point,	instead	of	a
Point3d,	we	can	always	get	a	Point3d.	So,	if	pt	is	a	Point,	and	we	want	to	set	the	origin	of	an	NXOpen.Direction	(which	requires	a	Point3d	object),	then	the	necessary	code	is:	myDirection.Origin	=	New	Point3d(pt.X,	pt.Y,	pt.Z)	Unrestricted	Getting	Started	with	NX	Open	Chapter	6:	Positions,	Vectors,	and	Points	Page	54	Chapter	7:	Curves	This	chapter
briefly	outlines	the	NX	Open	functions	for	creating	and	editing	curves	(lines,	arcs,	and	splines).	For	further	details,	please	look	at	the	NXOpen.CurveCollection	and	NXOpen.UF.UFCurve	classes	in	the	NXOpen	Reference	Guide.	■	Lines	The	NXOpen.CurveCollection	class	contains	two	functions	for	creating	lines,	as	follows:	Function	Inputs	and
Creation	Method	CreateLine(p0	As	Point3d,	p1	As	Point3d)	Between	two	Point3d	locations	CreateLine(p0	As	NXOpen.Point,	p1	As	NXOpen.Point)	Between	two	points	(NXOpen.Point	objects)	The	following	fragment	of	code	creates	two	points	and	two	lines	in	your	Work	Part:	Dim	p0	As	New	NXOpen.Point3d(1,2,3)	Dim	p1	As	New
NXOpen.Point3d(4,7,5)	Dim	line1	As	NXOpen.Line	=	workPart.Curves.CreateLine(p0,	p1)	Dim	pt0	As	NXOpen.Point	=	workPart.Points.CreatePoint(p0)	Dim	pt1	As	NXOpen.Point	=	workPart.Points.CreatePoint(p1)	Dim	line2	As	NXOpen.Line	=	workPart.Curves.CreateLine(pt0,	pt1)	line2.SetVisibility(SmartObject.VisibilityOption.Visible)	The	code	that
creates	line1	above	is	what	you	will	get	if	you	record	the	creation	of	a	line	using	Insert		Curve		Basic	Curves.	Note	that	we	had	to	set	the	visibility	of	line2	because	lines	created	via	this	method	are	invisible	by	default.	There	are	other	ways	to	create	lines,	too.	There	is	NXOpen.UF.UFCurve.CreateLine,	and	the	NXOpen.LineCollection	class	also	has
some	functions	for	creating	lines	along	the	axes	of	various	types	of	surfaces	of	revolution.	The	geometric	properties	of	lines	are:	Data	Type	Property	Access	Description	Point3d	StartPoint	get	Start	point	(point	where	t	=	0).	Point3d	EndPoint	get	End	point	(point	where	t	=	1).	The	StartPoint	and	EndPoint	properties	cannot	be	set	directly,	but	the
NXOpen.Line	class	provides	SetStartPoint,	SetEndPoint,	and	SetEndPoints	functions	that	let	you	modify	a	line:	Dim	newPoint	=	New	Point3d(6,7,9)	myLine.SetEndPoint(newPoint)	There	is	also	a	Guide.CreateLine	function,	which	makes	it	even	easier	to	create	a	line.	■	Associative	Line	Features	In	the	code	in	the	previous	section,	neither	line1	nor
line2	is	associative.	If	you	want	to	create	associative	lines,	you	should	use	the	AssociativeLineBuilder	class,	instead.	Code	that	uses	this	class	will	be	produced	if	you	record	the	Unrestricted	Getting	Started	with	NX	Open	Chapter	7:	Curves	Page	55	creation	of	a	line	using	Insert		Curve		Line.	The	recorded	code	may	be	rather	long,	but	its	essential	parts
are	as	follows:	'	Create	an	AssociativeLineBuilder	Dim	lineNothing	As	NXOpen.Features.AssociativeLine	=	Nothing	Dim	builder	As	NXOpen.Features.AssociativeLineBuilder	builder	=	workPart.BaseFeatures.CreateAssociativeLineBuilder(lineNothing)	builder.Associative	=	True	'	Define	the	start	point	Dim	p0	As	New	NXOpen.Point3d(1,2,3)	Dim	pt0	As
NXOpen.Point	=	workPart.Points.CreatePoint(p0)	builder.StartPointOptions	=	NXOpen.Features.AssociativeLineBuilder.StartOption.Point	builder.StartPoint.Value	=	pt0	'	Define	the	end	point	Dim	p1	As	New	NXOpen.Point3d(4,7,5)	Dim	pt1	As	NXOpen.Point	=	workPart.Points.CreatePoint(p1)	builder.EndPointOptions	=
NXOpen.Features.AssociativeLineBuilder.EndOption.Point	builder.EndPoint.Value	=	pt1	'	Create	an	associative	line	feature	Dim	result	As	NXOpen.NXObject	=	builder.Commit	builder.Destroy	The	result	object	created	by	this	code	is	actually	an	Associative	Line	feature,	rather	than	a	line.	This	has	advantages,	sometimes	—	the	feature	appears	in	the
Part	Navigator	and	some	forms	of	editing	are	easier.	To	obtain	an	oldfashioned	line	from	an	AssociativeLine	feature,	add	the	following	two	lines	to	the	code	above:	Dim	assocLine	As	NXOpen.Features.AssociativeLine	=	result	Dim	myLine	As	NXOpen.Line	=	assocLine.GetEntities(0)	■	Arcs	and	Circles	The	simplest	functions	for	creating	circular	arcs
can	again	be	found	in	the	NXOpen.CurveCollection	class.	There	are	three	functions,	as	follows:	Function	Public	Function	CreateArc(startPoint	As	Point3d,	pointOn	As	Point3d,	endPoint	As	Point3d,	alternateSolution	As	Boolean,	ByRef	flipped	As	Boolean)	Public	Function	CreateArc(center	As	Point3d,	xDirection	As	Vector3d,	yDirection	As	Vector3d,
radius	As	Double,	startAngle	As	Double,	endAngle	As	Double)	Function	Public	Function	CreateArc(center	As	Point3d,	matrix	As	NXMatrix,	radius	As	Double,	Unrestricted	Getting	Started	with	NX	Open	Inputs	and	Creation	Method	Through	three	points	From	center,	radius,	angles,	axis	vectors.	The	arc	lies	in	the	plane	containing	the	two	given	vectors.
The	center	point	is	expressed	using	Absolute	Coordinates,	and	the	angles	are	in	radians,	measured	in	a	counterclockwise	direction	from	the	xDirection	vector.	Inputs	and	Creation	Method	From	center	point,	radius,	angles,	orientation	matrix.	The	arc	lies	in	the	XY-plane	of	the	matrix.	The	center	point	is	expressed	using	Absolute	Coordinates,	and
Chapter	7:	Curves	Page	56	the	angles	are	in	radians,	measured	in	a	counterclockwise	direction	from	the	x-axis	of	the	matrix.	startAngle	As	Double,	endAngle	As	Double)	There	are	no	specific	functions	for	creating	complete	circles;	we	simply	set	endAngle	=	startAngle	+	2.	Here	is	a	simple	program	that	uses	lines	and	arcs	to	create	a	linkage	bar	lying
in	the	YZ	plane:	Dim	curves	As	NXOpen.CurveCollection	=	workPart.Curves	Dim	Dim	Dim	Dim	Dim	Dim	length	As	Double	=	8	width	As	Double	=	4	half	As	Double	=	width/2	holeDiam	As	Double	=	half	pi	As	Double	=	System.Math.PI	twopi	As	Double	=	2*pi	Dim	p1,	p2,	p3,	q1,	q2,	q3	As	NXOpen.Point3d	p1	=	New	Point3d(0,	-half,	0)	p2	=	New
Point3d(0,	0,	0)	p3	=	New	Point3d(0,	half,	0)	:	:	:	q1	=	New	Point3d(0,	-half,	length)	q2	=	New	Point3d(0,	0,	length)	q3	=	New	Point3d(0,	half,	length)	'	Left	and	right	sides	curves.CreateLine(p1,	q1)	curves.CreateLine(p3,	q3)	Dim	axisX	=	New	Vector3d(0,1,0)	Dim	axisY	=	New	Vector3d(0,0,1)	'	Horizontal	'	Vertical	'	Top	and	bottom	arcs
curves.CreateArc(q2,	axisX,	axisY,	half,	0,	pi)	curves.CreateArc(p2,	axisX,	axisY,	half,	pi,	twopi)	'	Top	and	bottom	holes	curves.CreateArc(q2,	axisX,	axisY,	holeDiam/2,	0,	twopi)	curves.CreateArc(p2,	axisX,	axisY,	holeDiam/2,	0,	twopi)	There	are	other	ways	to	create	arcs,	too.	For	example,	the	NXOpen.UF.UFCurve	class	has	functions	CreateArc,
CreateArcThru3pts,	and	CreateFillet.	The	NXOpen.ArcCollection	class	does	not	have	any	functions	for	creating	arcs.	Finally,	there	are	two	Guide.CreateCircle	functions	that	are	very	easy	to	use.	The	properties	of	arc	objects	are	as	follows:	Data	Type	Property	Access	Description	Double	Radius	get	Radius	of	arc.	Point3d	Center	get	Center	of	arc	(in
absolute	coordinates).	Double	StartAngle	get	Start	angle	(in	radians).	Double	EndAngle	get	End	angle	(in	radians).	None	of	these	properties	can	be	set	directly,	but	the	NXOpen.Arc	class	includes	two	SetParameters	functions	that	let	you	modify	an	arc	in	any	way	you	want.	Unrestricted	Getting	Started	with	NX	Open	Chapter	7:	Curves	Page	57	■
Associative	Arc	Features	The	code	in	the	previous	section	creates	plain	ordinary	arc	objects	that	are	not	associative.	These	are	perfectly	adequate	for	many	applications,	and	are	easy	to	create,	but	there	may	be	situations	where	you	want	to	create	an	associative	arc,	instead.	To	do	this,	you	should	use	the	AssociativeArcBuilder	class.	Code	that	uses
this	class	will	be	produced	if	you	record	the	creation	of	an	arc	using	Insert		Curve		Arc.	The	recorded	code	may	be	rather	long,	but	the	essential	parts	are	as	follows:	'	Create	an	AssociativeArcBuilder	Dim	arcNothing	As	NXOpen.Features.AssociativeArc	=	Nothing	Dim	builder	As	NXOpen.Features.AssociativeArcBuilder	builder	=
workPart.BaseFeatures.CreateAssociativeArcBuilder(arcNothing)	builder.Associative	=	True	'	Set	the	type	of	associative	arc	builder.Type	=	NXOpen.Features.AssociativeArcBuilder.Types.ArcFromCenter	'	Define	the	arc	center	point	Dim	centerCoords	As	New	Point3d(1.1,	2.2,	0)	Dim	centerPoint	As	NXOpen.Point	=
workPart.Points.CreatePoint(centerCoords)	builder.CenterPoint.Value	=	centerPoint	'	Define	the	arc	radius	builder.EndPointOptions	=	NXOpen.Features.AssociativeArcBuilder.EndOption.Radius	builder.Radius.RightHandSide	=	"7.89"	'	Define	the	angular	limits	(in	degrees)	builder.Limits.StartLimit.LimitOption	=
GeometricUtilities.CurveExtendData.LimitOptions.Value	builder.Limits.EndLimit.LimitOption	=	GeometricUtilities.CurveExtendData.LimitOptions.Value	builder.Limits.StartLimit.Distance.RightHandSide	=	"22.2"	builder.Limits.EndLimit.Distance.RightHandSide	=	"55.5"	'	Create	an	associative	arc	feature	and	get	its	arc	Dim	myArcFeature	As
NXOpen.Features.AssociativeArc	=	builder.Commit	builder.Destroy	Dim	myArc	As	NXOpen.Arc	=	myArcFeature.GetEntities()(0)	The	last	line	of	code	gets	an	ordinary	NXOpen.Arc	object	from	the	AssociativeArc	feature,	which	may	or	may	not	be	necessary,	depending	on	your	application.	An	AssociativeArcBuilder	object	has	a	large	number	of
properties	—	around	30	of	them,	in	all.	The	best	way	to	understand	what	they	all	mean	is	to	look	at	the	dialog	for	creating	an	arc	in	interactive	NX.	For	example,	we	defined	the	start	and	end	angles	of	the	arc	using	two	expressions	that	give	the	angular	limits	in	degrees.	If	you	edit	the	arc	we	created,	you	will	see	these	expressions	near	the	bottom	of
the	edit	dialog:	You	can	create	a	full	360	degree	circle	by	setting	the	limiting	angles	to	0	and	360,	of	course.	Alternatively,	you	can	just	set	builder.Limits.FullCircle	=	True.	Unrestricted	Getting	Started	with	NX	Open	Chapter	7:	Curves	Page	58	■	Conic	Section	Curves	Simple	functions	for	creating	conic	section	curves	(ellipses,	parabolas,	hyperbolas)
can	be	found	in	the	NXOpen.CurveCollection	class.	For	example,	one	of	the	functions	for	creating	an	ellipse	is	as	follows:	Function	Inputs	and	Creation	Method	Creates	an	ellipse	The	ellipse	lies	in	the	XY	plane	defined	by	the	given	matrix.	The	center	point	is	expressed	using	Absolute	Coordinates,	and	the	angles	are	in	radians,	measured	relative	to	the
given	matrix’s	axes.	public	Ellipse	CreateEllipse(Point3d	center,	double	majorRadius,	double	minorRadius,	double	startAngle,	double	endAngle,	double	rotationAngle,	NXMatrix	matrix)	To	create	an	ellipse	using	this	function,	the	code	is	as	follows:	'Get	the	matrix	of	the	current	WCS	Dim	wcsMatrix	As	NXOpen.NXMatrix	=
workPart.WCS.CoordinateSystem.Orientation	Dim	pi	As	Double	=	System.Math.PI	Dim	Dim	Dim	Dim	Dim	Dim	center	As	New	NXOpen.Point3d(0,0,0)	rX	As	Double	=	2	rY	As	Double	=	1	a0	As	Double	=	0	a1	As	Double	=	pi	rot	As	Double	=	pi/6	'	'	'	'	'	'	Center	point	(absolute	coordinates)	Major	Radius	Minor	radius	Start	angle	End	angle	Rotation	angle
workPart.Curves.CreateEllipse(center,	rX,	rY,	a0,	a1,	rot,	wcsMatrix)	This	creates	half	of	a	full	ellipse,	lying	in	a	plane	parallel	to	the	work	plane,	with	its	center	at	the	absolute	origin.	The	ellipse	is	rotated	in	its	plane	by	an	angle	of	30	degrees	(/6	radians).	The	NXOpen.Features.GeneralConicBuilder	class	allows	you	to	create	conic	section	curves	by
different	techniques,	by	specifying	various	combinations	of	point	and	tangency	constraints.	The	NXOpen.UF.UFCurve	class	also	provides	the	CreateConic,	and	EditConicData	functions.	■	Splines	The	NX	Open	functions	for	handling	splines	use	a	fairly	conventional	NURBS	representation	that	consists	of:		Poles	—	An	array	of	f	3D	vectors	representing
poles	(control	vertices)		Weights	—	An	array	of	f	weight	values	(which	must	be	strictly	positive)		Knots	—	An	array	of	f	+	g	knot	values:	h[0],	…	,	h[f	+	g	−	1]	The	order	and	degree	of	the	spline	can	be	calculated	from	the	sizes	of	these	arrays,	as	follows:		Let	f	=	number	of	poles	=	Poles.Length		Let	fjg	=	f	+	g	=	number	of	knots	=	Knots.Length	Then
the	order,	g	,	is	given	by	g	=	fjg	−	f.	Finally,	as	usual,	the	degree,	k	,	is	given	by	k	=	g	−	1.	You	may	not	be	familiar	with	the	“weight”	values	associated	with	the	poles,	since	these	are	not	very	visible	within	interactive	NX	—	you	can	see	them	in	the	Info	function,	but	you	can’t	modify	them.	So,	in	this	case,	the	NX	Open	API	actually	gives	you	more
power	than	interactive	NX.	Generally,	the	equation	of	a	spline	curve	is	given	by	a	rational	function	(the	quotient	of	two	polynomials).	This	is	why	spline	curves	are	sometimes	known	as	NURBS	(Non-Uniform	Rational	B-Spline)	curves.	If	the	weights	are	all	equal	(and	specifically	if	they	are	all	equal	to	1),	then	some	cancellation	occurs,	and	the	equation
becomes	a	polynomial.	Unrestricted	Getting	Started	with	NX	Open	Chapter	7:	Curves	Page	59	The	mathematical	theory	of	splines	is	quite	extensive	(one	of	the	best-known	books	on	the	subject	is	more	than	600	pages	long),	so	we	can	only	scratch	the	surface	here.	For	more	information,	please	consult	a	text-book,	or	one	of	the	many	available	on-line
resources.	The	simplest	function	for	creating	a	spline	is	NXOpen.UF.UFModl.CreateSpline,	because	its	inputs	closely	match	the	defining	data	outlined	above.	The	code	is	as	follows:	Dim	n	As	Integer	=	4	Dim	k	As	Integer	=	3	'	Number	of	poles	'	Order	of	curve	(degree	=	k-1	=	2)	'	3D	coordinates	of	poles	Dim	p	As	Double(,)	=	{	{1,0,0},	'	Weights	Dim
w	As	Double()	{3,1,0},	{5,1,0},	{6,0,0}	}	=	{1,	1,	0.7,	1}	'	Construct	4D	poles	Dim	poles4D(4*n-1)	As	Double	For	i	As	Integer	=	0	to	n-1	poles4D(4*i)	=	w(i)	*	p(i,0)	poles4D(4*i	+	1)	=	w(i)	*	p(i,1)	poles4D(4*i	+	2)	=	w(i)	*	p(i,2)	poles4D(4*i	+	3)	=	w(i)	Next	'	Knots	must	be	an	array	of	length	n	+	k	Dim	knots	As	Double()	=	{0,0,0,	0.6,	1,1,1}	Dim
splineTag	As	NXOpen.Tag	Dim	knotFixup	As	Integer	=	0	Dim	poleFixup	As	Integer	=	0	Dim	ufs	As	NXOpen.UF.UFSession	=	NXOpen.UF.UFSession.GetUFSession	ufs.Modl.CreateSpline(n,	k,	knots,	poles4D,	splineTag,	knotFixup,	poleFixup)	Note	how	the	3D	poles	and	the	weights	are	combined	into	4D	elements	of	the	form	(lm,	ln,	lo,	l).	The	code
above	is	somewhat	unusual	because	it	uses	weights	that	are	not	all	equal,	and	therefore	it	creates	a	rational	curve	(rather	than	a	polynomial	one).	In	most	cases,	you	would	set	all	weights	equal	to	one,	so	the	poles4D	array	would	simply	be:	1,0,0,1,	3,1,0,1,	5,1,0,1,	6,0,0,1.	To	construct	a	curve	of	order	g	with	f	poles,	you	need	f	+	g	knots.	So,	in	our
case,	we	need	7	knots.	Since	the	curve	has	order	3,	the	knot	sequence	should	begin	with	3	0’s	and	end	with	3	1’s.	That	only	leaves	one	knot	value	undecided,	and	the	code	above	assigns	it	a	value	of	0.6.	The	CreateSpline	function	returns	two	integers	knotFixup	and	poleFixup	that	indicate	whether	or	not	any	“fixup”	of	the	data	was	performed	inside
NX.	A	typical	fixup	is	a	slight	adjustment	of	knot	values	or	poles	that	are	very	close	together	but	not	identical.	In	almost	all	cases,	you	will	find	that	both	fixup	values	are	zero,	indicating	that	no	adjustments	were	required.	There	are	several	other	functions	for	creating	and	editing	splines.	The	NXOpen.UF.UFCurve	class	provides	a	function
CreateSplineThruPts	that	allows	you	to	construct	a	spline	that	passes	through	given	points,	and	also	lets	you	specify	slopes	and	curvatures	at	these	points.	Also,	in	NXOpen.UF.UFModl,	there	is	a	function	called	CreateFittedSpline	that	performs	smoothing	by	creating	a	spline	that	approximates	given	points	without	necessarily	passing	through	them
exactly.	Unrestricted	Getting	Started	with	NX	Open	Chapter	7:	Curves	Page	60	The	NX.Spline	class	provides	several	properties	and	functions	that	you	can	use	to	get	information	about	a	spline	curve,	as	follows:	Data	Type	Function/Property	Access	Description	Boolean	Rational	get	If	true,	indicates	that	the	spline	is	rational	(not	polynomial)	Boolean
Periodic	get	If	true,	indicates	that	the	spline	is	periodic	Point4d[]	GetPoles	get	The	4D	poles	of	the	spline	(wx,	wy,	wz,	w)	Integer	PoleCount	get	The	number	of	poles;	equal	to	GetPoles.Length/4	Double[]	GetKnots	get	The	knots	of	the	spline	Integer	Order	get	The	order	of	the	curve	(=	degree	+	1)	■	Studio	Splines	The	functions	described	in	the
previous	section	all	create	NXOpen.Spline	objects.	In	some	situations,	you	might	want	to	create	a	Studio	Spline	feature,	instead,	because	this	feature	will	appear	in	the	Part	Navigator	and	some	forms	of	editing	are	easier.	You	proceed	in	the	standard	way,	by	first	creating	a	StudioSplineBuilderEx	object,	and	then	setting	its	properties.	Many	of	the
properties	take	the	form	of	geometric	constraints	that	control	the	shape	of	the	curve.	For	example,	you	can	specify	points	that	the	spline	should	pass	through,	tangent	directions,	curvatures,	and	so	on.	To	make	the	coding	more	convenient,	let’s	first	write	a	small	“helper”	function	that	provides	an	easy	way	to	add	a	“point”	constraint	to	a
StudioSplineBuilderEx	object:	Private	Shared	Sub	AddPoint(builder	As	Features.StudioSplineBuilderEx,	coords	As	NXOpen.Point3d)	Dim	workPart	As	NXOpen.Part	=	NXOpen.Session.GetSession.Parts.Work	Dim	point	As	NXOpen.Point	=	workPart.Points.CreatePoint(coords)	Dim	geomCon	As	NXOpen.Features.GeometricConstraintData	geomCon	=
builder.ConstraintManager.CreateGeometricConstraintData	geomCon.Point	=	point	builder.ConstraintManager.Append(geomCon)	End	Sub	Using	this	helper	function,	here’s	how	we	construct	a	Studio	Spline	feature:	'	Create	the	builder	Dim	builder	As	NXOpen.Features.StudioSplineBuilderEx	builder	=
workPart.Features.CreateStudioSplineBuilderEx(Nothing)	'	Set	a	few	properties	builder.Type	=	NXOpen.Features.StudioSplineBuilderEx.Types.ByPoles	builder.IsSingleSegment	=	True	builder.IsAssociative	=	True	'	Add	some	Dim	pt1	As	Dim	pt2	As	Dim	pt3	As	point	constraints	New	NXOpen.Point3d(0,	7,	1)	New	NXOpen.Point3d(2,	7,	1)	New
NXOpen.Point3d(5,	9,	0)	:	:	:	AddPoint(builder,	pt1)	AddPoint(builder,	pt2)	AddPoint(builder,	pt3)	'	Create	the	Studio	Spline	Feature	Dim	splineFeature	As	NXOpen.Features.StudioSpline	=	builder.Commit	'	Get	the	spline	curve	(if	necessary)	Dim	spline	As	NXOpen.Spline	=	builder.Curve	builder.Destroy	Notice	that	we	have	set	IsAssociative	=	True.	If
we	had	set	this	property	to	False,	instead,	then	splineFeature	would	be	Nothing.	However,	an	NXOpen.Spline	curve	would	still	be	created,	which	we	could	then	use	in	subsequent	operations.	Unrestricted	Getting	Started	with	NX	Open	Chapter	7:	Curves	Page	61	■	Sketches	A	sketch	is	a	collection	of	curves	that	are	controlled	by	a	system	of	geometric
and	dimensional	constraints.	The	system	of	constraints	is	solved	to	give	the	sketch	curves	the	desired	size	and	shape.	As	an	example,	we	will	create	a	sketch	that	forms	a	“bridge”	between	two	points.	We	will	construct	a	circular	arc,	and	constrain	it	to	have	a	given	arclength	and	to	pass	through	the	two	given	points	p0	=	(2,0,0)	and	p1	=	(0,0,0).	p1	p0
We	begin	by	creating	a	datum	plane	and	a	datum	axis	to	control	the	orientation	of	our	sketch:	Dim	Dim	Dim	Dim	Dim	origin	As	New	NXOpen.Point3d(0,0,0)	axisX	As	New	NXOpen.Point3d(1,0,0)	wcsMatrix	As	NXOpen.Matrix3x3	=	workPart.WCS.CoordinateSystem.Orientation.Element	sketchPlane	As	NXOpen.DatumPlane	=
workPart.Datums.CreateFixedDatumPlane(origin,	wcsMatrix)	horizAxis	As	NXOpen.DatumAxis	=	workPart.Datums.CreateFixedDatumAxis(origin,	axisX)	Next,	we	create	an	empty	sketch	(that	does	not	yet	contain	any	curves),	using	the	familiar	builder	technique:	Dim	sketchBuilder	As	NXOpen.SketchInPlaceBuilder	sketchBuilder	=
workPart.Sketches.CreateNewSketchInPlaceBuilder(Nothing)	sketchBuilder.PlaneOrFace.Value	=	sketchPlane	sketchBuilder.Axis.Value	=	horizAxis	sketchBuilder.SketchOrigin	=	workPart.Points.CreatePoint(origin)	sketchBuilder.PlaneOption	=	NXOpen.Sketch.PlaneOption.Inferred	Dim	bridgeSketch	As	NXOpen.Sketch	=	sketchBuilder.Commit
sketchBuilder.Destroy	bridgeSketch.Activate(NXOpen.Sketch.ViewReorient.False)	The	last	line	of	code	activates	the	sketch,	allowing	us	to	add	curves	and	constraints	to	it.	Next,	we	create	an	arc	through	three	points,	and	add	it	to	our	sketch:	Dim	Dim	Dim	Dim	Dim	p0	As	New	NXOpen.Point3d(2,0,0)	'	Start	point	p1	As	New	NXOpen.Point3d(0,0,0)	'
End	point	pm	As	New	NXOpen.Point3d(1,1,0)	'	Interior	point	gotFlipped	As	Boolean	=	False	bridge	As	NXOpen.Arc	=	workPart.Curves.CreateArc(p0,	pm,	p1,	False,	gotFlipped)	theSession.ActiveSketch.AddGeometry(bridge,	NXOpen.Sketch.InferConstraintsOption.InferNoConstraints)	In	this	construction,	the	middle	point	pm	is	somewhat	arbitrary;
after	solving,	the	arc	will	no	longer	pass	through	this	point.	Unrestricted	Getting	Started	with	NX	Open	Chapter	7:	Curves	Page	62	The	next	step	is	to	create	some	constraints	that	make	the	start	and	end	points	of	the	arc	coincident	with	the	two	given	points	p0	and	p1.	The	code	for	constraining	the	start	point	is	as	follows:	Dim	arcPt0	As	New
NXOpen.Sketch.ConstraintGeometry	arcPt0.Geometry	=	bridge	arcPt0.PointType	=	NXOpen.Sketch.ConstraintPointType.StartVertex	arcPt0.SplineDefiningPointIndex	=	0	Dim	pt0	As	New	NXOpen.Sketch.ConstraintGeometry	pt0.Geometry	=	workPart.Points.CreatePoint(p0)	pt0.PointType	=	NXOpen.Sketch.ConstraintPointType.None
pt0.SplineDefiningPointIndex	=	0	theSession.ActiveSketch.CreateCoincidentConstraint(arcPt0,	pt0)	As	you	can	see,	we	do	not	use	the	point	p0	and	the	arc	end-point	directly	—	we	first	construct	ConstraintGeometry	objects	that	are	then	used	as	input	to	the	CreateCoincidentConstraint	function.	The	code	for	constraining	the	arc’s	end-point	is
analogous:	Dim	arcPt1	As	New	NXOpen.Sketch.ConstraintGeometry	arcPt1.Geometry	=	bridge	arcPt1.PointType	=	NXOpen.Sketch.ConstraintPointType.EndVertex	arcPt1.SplineDefiningPointIndex	=	0	Dim	pt1	As	New	NXOpen.Sketch.ConstraintGeometry	pt1.Geometry	=	workPart.Points.CreatePoint(p1)	pt1.PointType	=
NXOpen.Sketch.ConstraintPointType.None	pt1.SplineDefiningPointIndex	=	0	theSession.ActiveSketch.CreateCoincidentConstraint(arcPt1,	pt1)	The	“coincidence”	constraint	we	have	used	here	is	the	most	common	type,	but	the	Sketch	class	provides	functions	for	creating	many	other	types.	For	example,	parallel,	perpendicular	and	concentric
constraints	are	supported,	as	in	interactive	NX.	Next,	we	create	a	“perimeter”	dimension	to	control	the	length	of	the	arc:	Dim	length	As	NXOpen.Expression	=	workPart.Expressions.CreateExpression("Number",	"length	=	2.5")	Dim	perimeter	As	NXOpen.Curve()	=	{bridge}	theSession.ActiveSketch.CreatePerimeterDimension(perimeter,	origin,
length)	Typically,	the	perimeter	of	a	sketch	will	consist	of	an	array	of	curves,	of	course,	but	here	we	have	only	one.	Again,	the	Sketch	class	provides	functions	for	creating	various	other	types	of	dimensional	constraints	(linear,	angular,	diameter,	and	so	on).	Finally,	we	“update”	the	sketch,	and	deactivate	it.	theSession.ActiveSketch.LocalUpdate
theSession.ActiveSketch.Deactivate(NXOpen.Sketch.ViewReorient.False,	NXOpen.Sketch.UpdateLevel.Model)	When	we	call	the	LocalUpdate	function,	the	sketch	is	solved,	but	the	children	of	the	sketch	(if	any)	are	not	updated.	After	executing	the	code,	the	user	can	adjust	the	value	of	the	“length”	expression	to	modify	the	shape	of	the	curve.	The
picture	below	shows	some	sample	curves	with	lengths	2.3,	2.4,	and	2.5:	Unrestricted	Getting	Started	with	NX	Open	Chapter	7:	Curves	Page	63	Chapter	8:	Simple	Solids	and	Sheets	This	chapter	briefly	outlines	a	few	of	the	NX	Open	functions	that	are	available	for	creating	simple	solid	and	sheet	bodies.	Typically,	these	functions	create	features,	so	you
sometimes	have	to	do	a	bit	of	extra	work	to	get	the	constituent	bodies,	as	explained	later	in	chapter	10.	■	Creating	Primitive	Solids	The	NXOpen.Features	class	provides	a	variety	of	functions	for	creating	simple	solid	primitive	features	(blocks,	cylinders,	cones,	spheres,	etc.).	As	an	example,	let’s	consider	the	following	code	that	builds	a	sphere	feature:
Dim	builder	As	NXOpen.Features.SphereBuilder	builder	=	workPart.Features.CreateSphereBuilder(Nothing)	'	Specify	the	sphere	definition	type	(center	and	diameter)	builder.Type	=	Features.SphereBuilder.Types.CenterPointAndDiameter	'	Define	the	sphere	center	Dim	center	As	New	NXOpen.Point3d(3,5,6)	Dim	centerPoint	As	NXOpen.Point	=
workPart.Points.CreatePoint(center)	builder.CenterPoint	=	centerPoint	'	Define	the	sphere	diameter	Dim	diamString	As	String	=	"1.5"	builder.Diameter.RightHandSide	=	diamString	'	Define	the	boolean	option	(create,	unite,	etc.)	builder.BooleanOption.Type	=	NXOpen.GeometricUtilities.BooleanOperation.BooleanType.Create	'	Commit	to	create	the
feature	Dim	sphereObject	As	NXOpen.Features.Sphere	=	builder.CommitFeature	'	Destroy	the	builder	to	free	memory	builder.Destroy	So,	we	see	that	the	creation	process	follows	the	“builder”	pattern	that	we	explained	in	chapter	5.	The	general	approach	is	to		Create	a	“builder”	object		Modify	its	properties	as	desired		“Commit”	the	builder	to	create
a	new	feature	Functions	to	create	various	types	of	“builder”	objects	are	methods	of	a	FeatureCollection	object,	and	we	can	get	one	of	these	from	the	workPart.Features	property.	You	can	create	Block,	Cylinder	and	Cone	features	using	similar	techniques.	As	you	would	expect,	the	relevant	builder	objects	are	BlockFeatureBuilder,	CylinderBuilder,	and
ConeBuilder.	Of	these,	the	ConeBuilder	object	is	the	most	complex,	because	it	has	several	different	values	for	its	“Type”	property,	and	several	dimensional	parameters	(diameters,	height,	angle)	that	are	interdependent.	The	set	of	relevant	parameters	depends	on	the	value	of	the	Type	property.	For	example,	if	you	set	Type	=	DiametersAndHeight,	then
the	only	relevant	parameters	are	BaseDiameter,	TopDiameter,	and	Height.	You	can	assign	a	value	to	the	HalfAngle	parameter,	too,	but	this	setting	will	simply	be	ignored,	as	the	following	code	illustrates:	Unrestricted	Getting	Started	with	NX	Open	Chapter	8:	Simple	Solids	&	Sheets	Page	64	Dim	builder	=
workPart.Features.CreateConeBuilder(Nothing)	'	Specify	the	cone	definition	type	(diameters	and	height)	builder.Type	=	NXOpen.Features.ConeBuilder.Types.DiametersAndHeight	'	Define	the	diameters	and	height	(these	settings	are	relevant)	builder.BaseDiameter.RightHandSide	=	"3"	builder.TopDiameter.RightHandSide	=	"1.0"
builder.Height.RightHandSide	=	"4"	'	Try	to	define	HalfAngle	(no	error;	this	is	just	ignored)	builder.HalfAngle.RightHandSide	=	"1"	It’s	usually	fairly	obvious	which	parameters	are	used	with	each	setting	of	the	Type	property.	If	you’re	in	doubt,	you	can	experiment	with	the	Cone	dialog	in	interactive	NX.	As	you	change	the	Type	setting,	the	relevant	set
of	parameters	will	be	shown	in	the	lower	portion	of	the	dialog.	The	examples	in	this	document	often	use	spheres	and	cylinders	to	illustrate	some	point,	so	we	provide	simple	Guide.CreateSphere	and	Guide.CreateCylnder	functions	to	make	these	easy	to	create.	■	Sections	Before	we	discuss	Extruded	and	Revolved	features,	we	need	to	explain	the
concept	of	a	“section”.	When	you	are	selecting	curves	for	use	in	Extrude,	or	Revolve,	or	many	other	NX	functions,	a	menu	appears	in	the	top	border	bar	showing	you	the	available	“Selection	Intent”	rules.	This	menu	allows	you	to	define	a	collection	of	curves	that	is	dynamic	in	the	sense	that	its	members	are	determined	on-the-fly	based	on	the	rule	you
specify.	So,	for	example,	if	you	select	a	face	F	and	choose	the	“Face	Edges”	rule,	your	collection	will	contain	all	the	edges	of	the	face	F.	If	the	face	F	happens	to	change,	as	the	result	of	model	editing,	then	your	collection	will	still	consist	of	all	the	edges	of	F,	whatever	these	might	now	be.	The	collection	of	curves	is	“smart”	in	the	sense	that	it	responds
to	changes	in	the	model;	in	fact,	as	we	will	see,	a	collection	defined	in	this	way	is	sometimes	referred	to	as	a	“Smart	Collector”.	In	NX	Open,	there	is	a	corresponding	SelectionIntentRule	class,	which	has	numerous	derived	classes,	including								CurveDumbRule	CurveChainRule	CurveFeatureChainRule	CurveFeatureRule	CurveFeatureTangentRule
CurveGroupRule	CurveTangentRule	The	simplest	type	of	these	is	the	CurveDumbRule,	which	just	collects	a	specific	list	of	curves,	as	its	name	suggests.	In	an	NX	Open	program,	this	is	often	appropriate,	since	the	collection	logic	will	reside	in	your	code,	rather	than	in	NX	data	structures.	To	create	a	selection	intent	rule	of	type	CurveDumbRule	from	a
given	array	of	curves,	the	code	is	just:	Dim	dumbrule	As	CurveDumbRule	=	workPart.ScRuleFactory.CreateRuleCurveDumb(curveArray)	Unrestricted	Getting	Started	with	NX	Open	Chapter	8:	Simple	Solids	&	Sheets	Page	65	The	“Sc”	in	ScRuleFactory	stands	for	“Smart	Collector”.	Then,	once	we	have	this	rule,	we	can	use	it	to	add	curves	to	a	section.
So,	if	we	have	a	single	curve	named	arc,	the	code	to	create	a	section	is:	'	Create	a	selection	intent	rule	specifying	a	single	arc	Dim	dumbRule	As	NXOpen.CurveDumbRule	=	workPart.ScRuleFactory.CreateRuleBaseCurveDumb({arc})	Dim	rules	As	NXOpen.SelectionIntentRule()	=	{dumbRule}	'	Create	a	section	Dim	mySection	As	NXOpen.Section	=
workPart.Sections.CreateSection(0.0095,	0.01,	0.5)	Dim	help	As	New	NXOpen.Point3d(0,0,0)	Dim	nullObj	As	NXOpen.NXObject	=	Nothing	'	Use	the	rule	to	add	the	arc	to	the	section	Dim	noChain	As	Boolean	=	False	mySection.AddToSection(rules,	arc,	nullObj,	nullObj,	help,	NXOpen.Section.Mode.Create,	noChain)	If	we	want	a	rectangular	section
consisting	of	four	lines,	then	we	add	these	one	at	a	time,	as	follows:	'	Create	Dim	c1	=	Dim	c2	=	Dim	c3	=	Dim	c4	=	four	lines	workPart.Curves.CreateLine(New	workPart.Curves.CreateLine(New	workPart.Curves.CreateLine(New	workPart.Curves.CreateLine(New	Dim	ctol	=	0.0095	Dim	dtol	=	0.01	Dim	atol	=	0.5	Point3d(1,0,0),	Point3d(3,0,0),
Point3d(3,1,0),	Point3d(1,1,0),	New	New	New	New	Point3d(3,0,0))	Point3d(3,1,0))	Point3d(1,1,0))	Point3d(1,0,0))	'	Chaining	tolerance	'	Distance	tolerance	'	Angle	tolerance	'	Create	a	rectangular	section	Dim	rect	As	NXOpen.Section	=	workPart.Sections.CreateSection(ctol,	dtol,	atol)	Dim	Dim	Dim	Dim	helpPoint	As	New	NXOpen.Point3d(0,0,0)	nullObj
As	NXOpen.NXObject	=	Nothing	noChain	As	Boolean	=	False	createMode	As	NXOpen.Section.Mode	=	Section.Mode.Create	'	Create	rules	to	add	the	four	Dim	r1	As	NXOpen.CurveDumbRule	Dim	r2	As	NXOpen.CurveDumbRule	Dim	r3	As	NXOpen.CurveDumbRule	Dim	r4	As	NXOpen.CurveDumbRule	rect.AddToSection({r1},	rect.AddToSection({r2},
rect.AddToSection({r3},	rect.AddToSection({r4},	c1,	c2,	c3,	c4,	lines	to	the	section	=	workPart.ScRuleFactory.CreateRuleBaseCurveDumb({c1})	=	workPart.ScRuleFactory.CreateRuleBaseCurveDumb({c2})	=	workPart.ScRuleFactory.CreateRuleBaseCurveDumb({c3})	=	workPart.ScRuleFactory.CreateRuleBaseCurveDumb({c4})	nullObj,	nullObj,
nullObj,	nullObj,	nullObj,	nullObj,	nullObj,	nullObj,	helpPoint,	helpPoint,	helpPoint,	helpPoint,	createMode,	createMode,	createMode,	createMode,	noChain)	noChain)	noChain)	noChain)	Using	other	types	of	rules	is	quite	similar.	For	example,	if	we	want	a	section	that	gathers	together	all	the	edges	of	a	face	myFace,	we	write:	Dim	faceRule	As
NXOpen.EdgeBoundaryRule	=	workPart.ScRuleFactory.CreateRuleEdgeBoundary({myFace})	mySection.AddToSection({faceRule},	myFace,	nullObj,	nullObj,	help,	NXOpen.Section.Mode.Create,	False)	We	can	use	the	section	to	create	an	Extrude	feature,	a	Revolve	feature,	or	numerous	other	types.	Unrestricted	Getting	Started	with	NX	Open	Chapter
8:	Simple	Solids	&	Sheets	Page	66	■	Extruded	Bodies	Once	we	have	created	a	section,	creating	an	Extrude	feature	is	quite	straightforward.	So,	suppose	we	have	created	a	section	called	mySection,	as	in	the	code	above.	To	extrude	this	section	in	the	z-direction	we	write:	'	Create	an	ExtrudeBuilder	Dim	builder	=
workPart.Features.CreateExtrudeBuilder(Nothing)	'	Define	the	section	for	the	Extrude	builder.Section	=	mySection	'	Define	the	direction	for	the	Extrude	Dim	origin	As	New	NXOpen.Point3d(0,0,0)	Dim	axisZ	As	New	NXOpen.Vector3d(0,0,1)	Dim	updateOption	=	SmartObject.UpdateOption.DontUpdate	builder.Direction	=
workPart.Directions.CreateDirection(origin,	axisZ,	updateOption)	'	Define	the	extents	of	the	Extrude	builder.Limits.StartExtend.Value.RightHandSide	=	"-0.25"	builder.Limits.EndExtend.Value.RightHandSide	=	"0.5"	Dim	extrudeFeature	As	NXOpen.Features.Extrude	=	builder.CommitFeature	builder.Destroy	If	your	section	consists	of	an	open	string
of	curves	that	do	not	enclose	a	region,	then	the	result	will	be	a	sheet	body,	of	course.	On	the	other	hand,	when	you	extrude	a	closed	section,	you	can	decide	whether	you	want	a	sheet	body	or	a	solid	body	as	the	result.	The	draft	angle(s)	of	the	extruded	body	can	be	controlled	by	using	the	extrudeBuilder.Draft	property,	and	thin-walled	extrusions	can
be	created	using	the	extrudeBuilder.Offset	property.	So,	to	create	a	sheet	body	with	a	15	degree	draft	angle,	we	write:	builder.FeatureOptions.BodyType	=	GeometricUtilities.FeatureOptions.BodyStyle.Sheet	builder.Draft.DraftOption	=	GeometricUtilities.SimpleDraft.SimpleDraftType.SimpleFromProfile	builder.Draft.FrontDraftAngle.RightHandSide
=	"15"	Using	the	rectangular	section	named	rect	that	we	defined	above,	the	result	is:	Another	extrude	example	can	be	found	in	[NX]\UGOPEN\SampleNXOpenApplications\.NET\QuickExtrude.	Unrestricted	Getting	Started	with	NX	Open	Chapter	8:	Simple	Solids	&	Sheets	Page	67	■	Revolved	Bodies	Creating	Revolved	features	is	quite	similar	to
creating	Extruded	ones.	Again,	most	of	the	work	is	in	the	creation	of	the	section	that	we	revolve.	So,	suppose	we	have	already	created	the	rect	section	as	shown	above.	To	revolve	this	section	around	the	y-axis,	the	code	is:	'	Create	the	Revolve	builder	Dim	builder	=	workPart.Features.CreateRevolveBuilder(Nothing)	'	Define	the	section	for	the	Revolve
(see	above	for	details)	builder.Section	=	rect	'	Define	the	axis	to	revolve	around	(the	y-axis	of	the	Absolute	Coordinate	System)	Dim	axisPoint3d	As	New	NXOpen.Point3d(0,	0,	0)	Dim	axisVector	As	New	NXOpen.Vector3d(0,	1,	0)	Dim	updateOption	=	SmartObject.UpdateOption.WithinModeling	'	Define	a	direction	to	pass	the	revolve	point	and	axis	to
the	builder	Dim	direction	=	workPart.Directions.CreateDirection(axisPoint3d,	axisVector,	updateOption)	Dim	axisPoint	As	NXOpen.Point	=	workPart.Points.CreatePoint(axisPoint3d)	builder.Axis	=	workPart.Axes.CreateAxis(axisPoint,	direction,	updateOption)	'	Define	the	extents	of	the	Revolve	(in	degrees)
builder.Limits.StartExtend.Value.RightHandSide	=	"0"	builder.Limits.EndExtend.Value.RightHandSide	=	"90"	'	Commit	and	then	destroy	the	builder	Dim	revolveFeature	As	NXOpen.Features.Revolve	=	builder.CommitFeature	builder.Destroy	This	produces	the	result	shown	below	Unrestricted	Getting	Started	with	NX	Open	Chapter	8:	Simple	Solids	&
Sheets	Page	68	Chapter	9:	Object	Properties	&	Methods	The	objects	in	the	NXOpen	namespace	have	a	rich	set	of	properties	that	let	us	get	information	about	the	objects	and	(in	some	cases)	modify	them.	The	complete	properties	of	each	object	are	documented	in	the	NX	Open	Reference	Guide,	so	the	overview	provided	here	is	just	to	help	you
understand	the	basic	concepts.	As	we	mentioned	in	chapter	4,	objects	inherit	properties	from	the	parent	classes	from	which	they	are	derived,	in	addition	to	having	properties	of	their	own.	So,	since	NXOpen.Arc	inherits	from	NXOpen.Conic,	which	in	turn	inherits	from	NXOpen.Curve,	an	NXOpen.Arc	object	has	all	the	properties	of	an	NXOpen.Conic
object	and	all	the	properties	of	an	NXOpen.Curve	object,	in	addition	to	specific	properties	of	its	own.	In	the	NX	Open	Reference	Guide,	you	can	control	whether	or	not	inherited	members	are	displayed	by	clicking	in	the	check-box	circled	in	red	below:	As	you	can	see,	there	are	two	members	that	NXOpen.Arc	inherits	from	NXOpen.DisplayableObject,
one	that	it	inherits	from	NXOpen.Conic,	and	one	that	it	inherits	from	NXOpen.DisplayableObject.	All	four	of	these	will	be	hidden	if	you	uncheck	the	“inherited”	box.	■	NXObject	Properties	Most	objects	in	the	NX	Open	object	hierarchy	inherit	from	NXOpen.NXObject,	so	its	properties	are	very	important	because	they	trickle	down	to	all	the	lower-level
objects.	The	properties	can	be	divided	into	several	categories,	as	outlined	below:	Type	and	Subtype	Properties	Each	NX	Open	object	has	a	Type	property	and	a	Subtype	property,	which	you	will	often	use	to	make	decisions	about	how	to	process	the	object.	Some	objects	such	as	solid	geometry	objects	have	an	additional	SolidBodyType	property.	These
properties	are	read-only,	of	course	—	you	cannot	change	the	type	of	an	object.	Property	Query	Method	Description	Type	NXOpen.UF.UFObj.AskTypeAndSubtype	The	object’s	type	Subtype	NXOpen.UF.UFObj.AskTypeAndSubtype	The	object’s	subtype	SolidBodyType	Unrestricted	Getting	Started	with	NX	Open	Optional	detail	type	used	by	certain	types
of	objects	such	as	solid	geometry	objects.	Chapter	9:	Object	Properties	&	Methods	Page	69	Suppose	the	user	has	selected	an	object,	for	example.	You	might	want	to	test	whether	this	object	is	an	ellipse	before	processing	it.	The	code	to	do	this	would	be	as	follows:	'	Get	the	UFSession	Dim	ufs	As	NXOpen.UF.UFSession	=
NXOpen.UF.UFSession.GetUFSession	Dim	thing	As	NX.NXObject	=	...	Dim	myType	As	Integer	Dim	mySubType	As	Integer	ufs.Obj.AskTypeAndSubtype(thing.Tag,	myType,	mySubType)	If	myType	=	NXOpen.UF.UFConstants.UF_conic_type	And	mySubType	=	NXOpen.UF.UFConstants.UF_conic_ellipse_subtype	Then	'Do	something	End	If	You	can
reduce	the	typing	by	putting	Imports	NXOpen.UF.UFConstants	at	the	top	of	your	file.	In	some	cases,	it	might	be	more	convenient	to	test	the	type	of	an	object	using	the	standard	Visual	Basic	TypeOf	function.	For	example,	the	code	above	could	be	written	as:	Dim	thing	As	NX.NXObject	=	...	If	TypeOf	thing	Is	NXOpen.Ellipse	'Do	something	End	If
Display	Properties	Many	of	the	objects	that	NX	users	deal	with	are	of	type	NXOpen.DisplayableObject	(a	subtype	derived	from	NXOpen.NXObject).	These	objects	have	the	following	properties:	Data	Type	Property	Access	Description	Integer	Layer	get,	set	The	layer	on	which	the	object	resides	Boolean	IsBlanked	get	If	true,	indicates	that	the	object	is
blanked	(hidden)	Integer	Color	get,	set	The	color	of	the	object	as	an	index	to	the	NX	color	palette	ObjectFont	LineFont	get,	set	The	line	font	used	to	draw	the	object	(solid,	dashed,	etc.)	ObjectWidth	LineWidth	get,	set	The	line	width	used	to	draw	the	object	Point3d	NameLocation	get	The	location	of	the	object’s	name	Note	that	the	Color	attribute	is	a
color	index	into	the	color	palette	for	the	part.	The	NXOpen.UF.UFDisp	class	contains	several	functions	for	working	with	NX	color	indices.	For	example,	NXOpen.UF.UFDisp.AskColor	gets	the	RGB	values	associated	with	a	given	color	index,	and	NXOpen.UF.UFDisp.AskClosestColor	does	the	reverse.	Attribute	Properties	For	technical	reasons,	attributes
cannot	be	implemented	as	“real”	properties,	so	they	are	accessed	via	old-fashioned	“Get”	and	“Set”	methods	on	the	NXOpen.NXObject	class.	All	NX	objects	that	can	contain	attributes	Unrestricted	Getting	Started	with	NX	Open	Chapter	9:	Object	Properties	&	Methods	Page	70	inherit	from	NXObject.	A	few	of	the	available	methods	are	listed	below,
and	the	complete	set	is	covered	in	the	documentation	for	the	NXOpen.NXObject	class	in	the	NX	Open	Reference	Guide:	NXOpen.NXObject	Method	Description	DeleteUserAttributes(Type	As	AttributeType,	Title	As	String,	DeleteArray	As	Boolean,	Option	As	UpdateOption)	Deletes	the	first	attribute	encountered	with	the	given	Type	and	Title.	Can
perform	an	update	if	desired.	If	attribute	is	an	attribute	array,	can	optionally	delete	the	entire	array.	DeleteUserAttributes(Type	As	AttributeType,	Option	As	Update.Option)	Deletes	the	attributes	encountered	with	the	given	Type.	Can	perform	an	update	if	desired.	GetXxxUserAttribute(Title	As	String,	Index	As	Integer)	Gets	the	value	of	an	attribute
with	the	given	Title	and	array	Index	(if	the	attribute	is	an	array	attribute).	Xxx	can	be	Boolean,	Integer,	Real,	String,	or	Time.	GetUserAttribute(Title	As	String,	Index	As	Integer)	Gets	an	AttributeInformation	structure	of	the	first	attribute	encountered	on	the	object	with	a	given	Title	and	array	Index	(if	attribute	is	an	array	attribute).
GetUserAttributes()	Gets	an	array	of	AttributeInformation	structures	of	all	the	attributes	that	have	been	set	on	the	object.	HasUserAttribute(Title	As	String,	Type	As	AttributeType,	Index	As	Integer)	Checks	if	the	object	has	an	attribute	with	the	given	Title,	Type,	and	Index.	Name	The	name	of	the	object	(aka	“custom	name”,	sometimes)
SetXxxUserAttribute(Title	As	String,	Index	As	Integer,	Value	As	Xxx,	Option	As	Update.Option)	Creates	and/or	sets	the	value	of	an	attribute	of	type	Xxx,	where	Xxx	can	be	Boolean	or	Time.	The	attribute	is	identified	by	the	string	Title	and	array	Index	(if	attribute	is	an	array	attribute).	Can	perform	an	update	if	desired.	SetUserAttribute(Title	As	String,
Integer,	Value	As	Double,	Option	As	Update.Option)	Creates	or	modifies	a	real	attribute.	Arrays	can	be	extended	only	one	element	at	a	time.	Can	perform	an	update	if	desired.	SetUserAttribute(Title	As	String,	Index	As	Integer,	Value	As	Integer,	Option	As	Update.Option)	Creates	or	modifies	an	integer	attribute.	Arrays	can	be	extended	only	one
element	at	a	time.	Can	perform	an	update	if	desired.	SetUserAttribute(Title	As	String,	Integer,	Value	As	String,	Option	As	Update.Option)	Creates	or	modifies	a	string	attribute.	Arrays	can	be	extended	only	one	element	at	a	time.	Can	perform	an	update	if	desired.	■	Curve	and	Edge	Properties	In	this	section,	we	describe	techniques	for	getting
information	about	curves	and	edges.	Specifically,	we	discuss	how	we	can	obtain	position	and	tangent	information,	shape	parameters	like	radius,	and	topological	properties.	Evaluators	Some	of	the	most	useful	methods	when	working	with	curves	or	edges	are	the	so-called	“evaluator”	functions.	At	a	given	location	on	a	curve	(defined	by	a	parameter
value	t),	we	can	ask	for	a	variety	of	different	values,	such	as	the	position	of	the	point,	or	the	tangent	or	curvature	of	the	curve.	The	evaluator	functions	are	provided	by	the	NXOpen.UF.UFEval	class.	The	most	important	functions	are	Evaluate	and	EvaluateUnitVectors	Function	Values	calculated	Evaluate	Position	and	derivatives	at	given	parameter
value	EvaluateUnitVectors	Position,	tangent,	normal,	binormal	at	given	parameter	value	The	following	code	uses	the	Evaluate	function	to	compute	a	position	and	tangent	at	a	location	along	myCurve,	which	is	assumed	to	be	of	type	NXOpen.Curve	or	NXOpen.Edge	Unrestricted	Getting	Started	with	NX	Open	Chapter	9:	Object	Properties	&	Methods
Page	71	'	Get	the	UFSession	Dim	ufs	As	NXOpen.UF.UFSession	=	NXOpen.UF.UFSession.GetUFSession	'	Get	the	tag	of	our	curve	Dim	curveTag	As	NXOpen.Tag	=	myCurve.Tag	'	Create	an	evaluation	structure	Dim	estruct	As	System.IntPtr	ufs.Eval.Initialize2(curveTag,	eStruct)	'	Compute	point	and	first	derivative	at	t	=	0.5	Dim	t	As	Double	=	0.5	Dim
numDerivs	=	1	Dim	coords	As	Double()	=	{	0,	0,	0	}	Dim	derivs	As	Double()	=	{	0,	0,	0	}	ufs.Eval.Evaluate(eStruct,	numDerivs,	t,	coords,	derivs)	Dim	curvePoint	As	New	NXOpen.Point3d(coords(0),	coords(1),	coords(2))	Dim	curveTangent	As	New	NXOpen.Vector3d(derivs(0),	derivs(1),	derivs(2))	'	Free	the	evaluation	structure	ufs.Eval.Free(eStruct)	In
other	software	systems,	a	common	approach	is	to	“normalize”	the	parameter	value	(t)	that	is	passed	to	these	sorts	of	evaluator	functions,	so	that	it	lies	in	the	range	0	≤	t	≤	1.	With	this	approach,	the	parameter	value	t	=	0.5	used	in	the	code	above	would	correspond	to	the	parametric	mid-point	of	the	curve.	In	NX	Open,	this	normalization	process	is	not
used,	so	the	parameter	values	used	are	the	original	“native”	parameters	of	the	curve.	So,	in	the	example	above,	if	myCurve	was	a	circular	arc,	the	parameter	value	t	=	0.5	would	be	the	point	at	an	angle	of	0.5	radians.	If	you	want	to	use	normalized	parameter	values,	you	can	construct	these	yourself.	The	following	code	shows	you	how	to	compute	a
point	that	is	25%	of	the	way	along	a	given	curve	or	edge	denoted	by	myCurve:	'	Get	the	parameter	limits	of	the	curve	Dim	limits	As	Double()	ufs.Eval.AskLimits(estruct,	limits)	'	Normalized	parameter	value	is	u	=	0.25	Dim	u	As	Double	=	0.25	'	Compute	non-normalized	parameter	value,	t	Dim	t	=	(1-u)*limits(0)	+	u*limits(1)	'	Compute	point	at	t	value
Dim	coords	As	Double()	=	{	0,	0,	0	}	Dim	derivs	As	Double()	=	{	0,	0,	0	}	ufs.Eval.Evaluate(eStruct,	0,	t,	coords,	derivs)	Dim	curvePoint	As	New	NXOpen.Point3d(coords(0),	coords(1),	coords(2))	As	we	have	seen	above,	the	evaluator	functions	use	an	“evaluation	structure”	that	is	returned	by	an	Initialize2	function,	rather	than	directly	using	the	curve
or	edge	itself.	Then,	after	you	have	finished	using	this	structure,	you	should	call	the	Free	function	to	release	the	memory	it	has	been	using.	In	between	the	Initialize	and	Free	steps,	you	can	use	an	evaluation	structure	as	many	times	as	you	like.	The	code	below	shows	a	common	technique	for	creating	a	sequence	of	points	along	a	curve;	as	you	can	see,
we	initialize	the	evaluation	structure	once,	use	it	101	times,	and	then	free	it.	Unrestricted	Getting	Started	with	NX	Open	Chapter	9:	Object	Properties	&	Methods	Page	72	The	example	uses	a	spline	curve,	so	we	can	safely	assume	that	the	parameter	limits	are	0	and	1:	'	Create	an	evaluation	structure	for	the	spline	Dim	estruct	As	System.IntPtr
ufs.Eval.Initialize2(splineTag,	estruct)	'	Prepare	for	Dim	numDerivs	Dim	coords	As	Dim	derivs	As	stepping	along	the	spline	=	1	Double()	=	{0,	0,	0}	Double()	=	{0,	0,	0}	'Step	along	the	spline,	creating	101	points	For	t	As	Double	=	0	To	1	Step	0.01	ufs.Eval.Evaluate(estruct,	numDerivs,	t,	coords,	derivs)	Dim	curvePosition	As	New
NXOpen.Point3d(coords(0),	coords(1),	coords(2))	workPart.Points.CreatePoint(curvePosition)	Next	'	Free	the	evaluation	structure	ufs.Eval.Free(estruct)	There	is	another	function	NXOpen.UF.Modl.EvaluateCurve	that	also	allows	you	to	calculate	a	point	at	a	given	parameter	value.	It	is	slightly	simpler	to	use,	but	it	only	works	with	curves,	not	with
edges.	Edge	Topology	Properties	The	main	difference	between	an	edge	and	a	curve,	of	course,	is	that	an	edge	is	part	of	a	body,	whereas	a	curve	is	not.	Because	of	this,	an	edge	has	“topological”	properties	that	a	curve	does	not	have,	which	describe	how	the	edge	is	connected	to	other	items	(faces,	edges,	vertices)	within	the	body.	Basic	topology
enquiries	are	quite	simple:	if	myEdge	is	of	type	NXOpen.Edge,	then	you	can	use	the	myEdge.GetFaces	function	to	find	out	which	faces	it	belongs	to,	and	the	myEdge.GetBody	function	to	find	out	which	body	it	belongs	to.	Edge	Geometry	Properties	The	NXOpen.UF.EFEval	class	has	functions	that	return	geometric	properties	of	various	types	of	edges.
Specifically,	there	are	functions	named	AskLine,	AskArc,	AskSpline,	and	so	on.	For	example,	the	following	code	gets	the	center	and	radius	of	a	circular	edge,	myArcEdge	'	Get	the	tag	of	our	edge	Dim	edgeTag	As	NXOpen.Tag	=	myArcEdge.Tag	'	Get	an	evaluation	structure	Dim	estruct	As	System.IntPtr	ufs.Eval.Initialize2(edgeTag,	estruct)	'	Get	an	arc
evaluation	structure	Dim	evalArc	As	NXOpen.UF.UFEval.Arc	ufs.Eval.AskArc(estruct,	evalArc)	'	Get	the	edge's	center	and	radius	Dim	centerCoords	As	Double()	=	evalArc.center	Dim	radius	As	Double	=	evalArc.radius	'	Free	the	evaluation	structure	ufs.Eval.Free(estruct)	Unrestricted	Getting	Started	with	NX	Open	Chapter	9:	Object	Properties	&
Methods	Page	73	■	Face	Properties	Like	edges,	faces	have	evaluator	functions,	topological	properties,	and	geometric	properties.	Evaluators	As	with	curves,	we	can	call	an	“evaluator”	function	to	calculate	certain	values	at	a	given	point	on	a	surface	(or	a	face).	So,	as	you	might	expect,	we	can	get	the	location	of	the	point,	the	surface	normal	at	the
point,	and	so	on.	To	indicate	which	point	we’re	interested	in,	we	have	to	give	two	parameter	values,	traditionally	denoted	by	u	and	v.	The	following	code	illustrates	the	approach:	Get	the	UFSession	Dim	ufs	As	NXOpen.UF.UFSession	=	NXOpen.UF.UFSession.GetUFSession	'	Get	the	tag	of	our	face	Dim	faceTag	As	NXOpen.Tag	=	myFace.Tag	'	Get	the
uv	mid-point	of	the	face	Dim	minU,	maxU,	minV,	maxV,	box(3),	uv(1)	As	Double	ufs.Modl.AskFaceUvMinmax(faceTag,	box)	minU	=	box(0)	:	maxU	=	box(1)	minV	=	box(2)	:	maxV	=	box(3)	uv	=	{	(minU	+	maxU)/2,	(minV	+	maxV)/2	}	'	Create	a	structure	to	hold	the	evaluation	results	Dim	faceValues	As	New	NXOpen.UF.ModlSrfValue	'	Ask	for	position,
first	derivatives,	and	unit	normal	Dim	request	As	Integer	=	NXOpen.UF.UFConstants.UF_MODL_EVAL_UNIT_NORMAL	'	Evaluate	at	uv	mid-point	ufs.Modl.EvaluateFace(faceTag,	request,	uv,	faceValues)	'	Extract	position	and	unit	normal	at	point	on	face	Dim	facePosition	As	Double()	=	faceValues.srf_pos	Dim	faceNormal	As	Double()	=
faceValues.srf_unormal	As	you	can	see,	the	first	step	is	to	get	the	parametric	mid-point	of	the	face.	Of	course,	if	we	wanted	to	evaluate	at	some	other	point	of	the	face,	this	step	would	not	be	necessary.	By	setting	request	=	UF_MODL_EVAL_UNIT_NORMAL,	we	have	asked	for	calculation	of	a	position,	first	partial	derivatives,	and	a	unit	surface	normal,
so	these	are	available	in	the	faceValues	structure	that	is	returned.	Various	other	request	constants	are	provided	in	the	UFConstants	class;	the	most	comprehensive	of	these	is	UF_MODL_EVAL_ALL,	which	allows	you	to	calculate	position,	surface	normal,	and	all	the	partial	derivatives	up	to	the	third	order.	There	is	a	related	function,
NXOpen.UF.UFModl.AskFaceProps,	that	provides	additional	information	about	curvature.	Despite	its	name,	the	EvaluateFace	function	we	used	above	is	actually	doing	computations	on	a	surface,	rather	than	a	face.	So,	when	performing	evaluations,	you	do	not	need	to	restrict	yourself	to	uv	values	that	correspond	to	locations	inside	the	given	face.	Even
the	uv	mid-point	we	used	above	is	not	guaranteed	to	lie	within	the	face,	because	the	face	might	have	some	hole	or	notch	that	excludes	it.	Face	Topology	Properties	Like	an	edge,	a	face	has	“topological”	properties	that	describe	its	relationship	to	other	objects	in	its	body.	If	myFace	is	an	NXOpen.Face	object,	then	myFace.GetBody	gives	you	the	body
that	the	face	lies	on,	and	myFace.GetEdges	returns	its	array	of	edges..	Unrestricted	Getting	Started	with	NX	Open	Chapter	9:	Object	Properties	&	Methods	Page	74	Face	Geometry	Properties	To	get	information	about	the	geometry	of	a	face,	you	use	the	NXOpen.UF.UFModl.AskFaceData	function.	For	example,	the	following	code	gets	information
about	a	face	myFace:	Dim	ufs	As	NXOpen.UF.UFSession	=	NXOpen.UF.UFSession.GetUFSession	Dim	Dim	Dim	Dim	Dim	Dim	axisPoint(2)	As	Double	axisVector(2)	As	Double	box(5)	As	Double	surfType	As	Integer	r1,	r2	As	Double	flip	As	Integer	'	'	'	'	'	'	Point	on	cylinder	axis	Direction	vector	of	cylinder	axis	3D	bounding	box	of	face	Surface	type	(see
below)	Radii	of	face	(see	below)	Normal	flip	indicator	ufs.Modl.AskFaceData(myFace.Tag,	surfType,	axisPoint,	axisVector,	box,	r1,	r2,	flip)	The	box	argument	provides	a	bounding	box	for	the	face,	with	axes	aligned	with	the	Absolute	Coordinate	System.	The	box	is	represented	by	6	numbers	in	the	order	minX,	minY,	minZ,	maxX,	maxY,	maxZ.	The	flip
argument	is	equal	to	±1,	and	indicates	on	which	side	of	the	surface	material	lies.	Specifically,	if		r	and		s	are	the	first	partial	derivatives	of	the	surface,	then	the	vector	tuvj	∗	(r	×		s)	points	away	from	material,	into	“air”.	The	meanings	of	the	other	parameters,	for	various	different	surface	types,	are	given	in	the	following	table:	Face	Type	Type
axisPoint	axisVector	r1	r2	Cylinder	16	Point	on	axis	Axis	vector	Radius	---	Cone	17	Point	on	axis	Axis	vector	Radius	at	axis	point	Half-angle	(in	radians)	Sphere	18	Center	---	Radius	---	Revolved	19	Point	on	axis	Axis	vector	---	---	Torus	19	Center	Axis	vector	Major	radius	Minor	radius	Extruded	20	---	---	---	---	Plane	22	Point	on	plane	Normal	---	---	Blend	23	-
--	---	Radius	---	B-surface	43	---	---	---	---	Offset	65	---	---	---	---	There	is	another	function	NXOpen.UF.UFModl.AskBsurf	that	provides	detailed	information	about	b-surfaces.	Unrestricted	Getting	Started	with	NX	Open	Chapter	9:	Object	Properties	&	Methods	Page	75	Chapter	10:	Feature	Concepts	The	NXOpen.Features	class	contains	a	wide	variety	of
functions	for	creating	“features”.	At	one	extreme,	features	can	be	very	simple	objects	like	blocks	or	spheres;	at	the	other	extreme,	features	like	ThroughCurveMesh	can	be	very	complex.	In	this	chapter,	we	explain	what	a	feature	is,	and	give	some	samples	of	the	NX	Open	functions	that	create	them.	As	usual,	the	full	details	can	be	found	in	the	NX	Open
Reference	Guide.	■	What	is	a	Feature	?	Though	you	have	probably	created	hundreds	of	features	while	running	NX	interactively,	perhaps	you	never	stopped	to	think	what	a	“feature”	really	is.	So,	here	is	the	definition	...	A	feature	is	a	collection	of	objects	created	by	a	modeling	operation	that	remembers	the	inputs	and	the	procedure	used	to	create	it.
The	inputs	used	to	create	the	feature	are	called	its	“parents”,	and	the	new	feature	is	said	to	be	the	“child”	of	these	parents.	This	human	family	analogy	can	be	extended	in	a	natural	way	to	provide	a	wealth	of	useful	terminology.	We	can	speak	of	the	grandchildren	or	the	ancestors	or	the	descendants	of	an	object,	for	example,	with	the	obvious
meanings.	An	object	that	has	no	parents	(or	has	been	disconnected	from	them)	is	said	to	be	an	“orphan”,	or	sometimes	a	“dumb”	object,	or	an	“unparameterized”	one.	The	inputs	and	the	procedure	are	also	known	as	the	“history”	of	the	object,	or	the	“recipe”,	or	the	“parameters”.	There	is	no	shortage	of	terminology	in	this	area.	The	great	power	of
features	is	that	they	capture	the	process	(i.e.	the	history,	or	recipe)	used	to	create	an	object.	You	can	change	the	inputs,	and	then	re-execute	this	process,	which	gives	you	some	remarkable	editing	capabilities.	You	can	also	re-order	features,	delete	them,	or	insert	new	ones	in	the	middle	of	the	“recipe”,	which	again	provides	very	powerful	editing
techniques.	■	Types	of	Features	There	are	many	different	types	of	features,	plus	two	important	subclasses:	Body	Features	and	Curve	Features.	Some	of	the	more	common	examples	are	listed	in	the	table	below:	Features	Body	Features	Curve	Features	AssociativeArc	AssociativeLine	CompositeCurve	CurveOnSurface	DatumCsys	DatumFeature	Helix
JoinCurves	PointFeature	StudioSpline	Measure	Extract	Block	BoundedPlane	Brep	Cylinder	EdgeBlend	ExtractFace	Extrude	FaceBlend	Revolve	Scale	ThroughCurves	Tube	IntersectionCurve	IsoparametricCurve	OffsetCurve	PointSet	ProjectCurve	VirtualCurve	Important	properties	and	methods	for	the	NXOpen.Features.Feature	class	are:	Member
Description	FeatureType	Returns	the	feature	type	as	a	String	(see	below)	GetEntities	Returns	the	entities	created	by	the	feature	GetExpressions	Returns	the	expressions	created	by	the	feature	GetFeatureName	Returns	the	displayed	name	of	the	feature.	Unrestricted	Getting	Started	with	NX	Open	Chapter	10:	Feature	Concepts	Page	76	GetParents
Returns	the	immediate	parent	features	Suppress()	Suppresses	the	feature	Suppressed	Returns	the	suppression	status	of	the	feature	Timestamp	Returns	the	feature’s	timestamp	as	an	Integer	Some	of	the	feature	type	strings	are	rather	strange	and	cryptic,	especially	in	older	models;	you	may	see	things	like	BREP,	CPROJ,	FRENET_DATUM_PLANE,
SKIN,	SWP104,	META,	and	so	on.	It’s	usually	better	to	use	the	standard	VB	TypeOf	or	GetType	operators	to	find	out	the	type	of	a	feature.	As	the	name	suggests,	a	BodyFeature	is	a	feature	that	produces	a	body	or	a	collection	of	bodies	as	its	result.	Similarly,	a	CurveFeature	typically	produces	curves	(or	points).	So,	these	classes	have	some	additional
members.	For	example,	a	BodyFeature	has	GetBodies,	GetFaces,	and	GetEdges	functions,	and	a	CurveFeature	has	Color,	Font,	and	Width	properties.	For	a	BodyFeature,	the	GetEntities	function	typically	returns	an	array	of	length	zero,	so	you	should	use	the	GetBodies	function	instead.	The	following	code	cycles	through	the	work	part,	writing	out	some
information	about	each	feature	it	finds:	For	Each	feat	In	workPart.Features	Guide.InfoWriteLine("Type:	"	&	feat.GetType.ToString)	Guide.InfoWriteLine("Name:	"	&	feat.GetFeatureName)	Guide.InfoWriteLine("Timestamp:	"	&	feat.TimeStamp)	Guide.InfoWriteLine("NumParents:	"	&	feat.GetParents.Length)	Guide.InfoWriteLine("NumExpressions:	"	&

feat.GetExpressions.Length)	Next	■	Feature	Display	Properties	An	NXOpen.Features.Feature	is	not	an	NXOpen.DisplayableObject,	so	its	color,	hidden/shown	property,	layer	assignment,	and	other	display	attributes	are	not	handled	in	the	standard	way.	You	can	actually	change	the	color	of	a	feature	using	an	NXOpen.Features.ColorFeatureBuilder,	but
it’s	often	better	to	proceed	via	first	principles,	as	explained	below.	The	key	idea	is	that	a	feature	typically	“owns”	some	constituent	objects	(like	bodies	and	curves),	which	are	often	known	as	its	“outputs”.	The	output	objects	do	have	display	properties,	so	you	can	use	them	to	(indirectly)	modify	the	display	of	the	feature.	You	can	get	these	output	objects
by	calling	the	GetBodies	or	GetEntities	functions	mentioned	above.	A	couple	of	examples	should	make	this	more	clear.	First,	suppose	you	created	a	Block	feature.	You	cannot	directly	change	the	color	of	this	feature	in	the	usual	way.	However,	the	Block	feature	owns	a	solid	body	(which	you	can	get	by	calling	GetBodies).	You	can	change	the	color	of	this
body,	and	this	will	effectively	change	the	color	of	the	feature.	Another	example:	suppose	you	created	a	Hole	feature.	You	can’t	change	the	color	of	the	Hole	in	the	usual	way,	but	you	can	get	its	faces	and	change	their	colors,	instead.	In	fact,	you	might	decide	to	assign	different	colors	to	different	faces	of	the	hole.	The	code	below	provides	a	more
interesting	example	involving	a	feature	with	two	bodies:	'Create	two	circles,	and	extrude	them	Dim	disk0	As	NXOpen.Arc	=	NXOpen.Guide.CreateCircle(0,0,0,	2)	Dim	disk1	As	NXOpen.Arc	=	NXOpen.Guide.CreateCircle(0,5,0,	1)	Dim	pegs	As	NXOpen.Features.Extrude	=	'	'Get	the	two	displayable	objects	of	the	Extrude	feature	(two	bodies)	Dim	bodies
As	NXOpen.Body()	=	pegs.GetBodies	'	Change	their	colors	bodies(0).Color	=	186	bodies(1).Color	=	211	'	Usually	red,	by	default	'	Usually	blue,	by	default	Unrestricted	Getting	Started	with	NX	Open	Chapter	10:	Feature	Concepts	Page	77	■	Using	Features	and	Bodies	As	we	saw	above,	when	working	with	display	properties,	we	have	to	be	careful	to
make	the	distinction	between	a	feature	and	its	constituent	bodies.	Next	we	will	see	that	this	distinction	is	also	relevant	in	modeling.	There	are	many	modeling	and	computation	functions	that	expect	to	receive	bodies	as	input.	Examples	are	Boolean	operation	functions,	trimming,	splitting,	computing	mass	properties,	and	so	on.	Since	most	of	the	basic
creation	functions	produce	features,	the	output	of	these	functions	will	not	be	immediately	usable	unless	we	make	some	accommodation.	For	example,	consider	the	following	code:	Dim	Dim	Dim	Dim	s1	As	NXOpen.Features.Sphere	=	NXOpen.Guide.CreateSphere(0,0,0,	1)	s2	As	NXOpen.Features.Sphere	=	NXOpen.Guide.CreateSphere(1,0,0,	2)	union
As	NXOpen.Features.BooleanFeature	=	NXOpen.Guide.Unite(s1,	s2)	volume	As	Double	=	'	'	Doesn’t	work	'	Doesn’t	work	The	Unite	function	expects	two	bodies	as	input,	but	s1	and	s2	are	features,	so	the	operation	will	not	work.	Similarly,	the	function	that	computes	volume	expects	to	receive	a	body,	so	this	won’t	work,	either.	We	can	fix	the	code,	by
getting	bodies	from	the	features	before	performing	the	unite	or	the	volume	calculation.	So,	the	corrected	version	of	the	code	above	is:	Dim	s1	As	NXOpen.Features.Sphere	=	NXOpen.Guide.CreateSphere(0,0,0,	1)	Dim	s2	As	NXOpen.Features.Sphere	=	NXOpen.Guide.CreateSphere(1,0,0,	2)	Dim	sb1	As	NXOpen.Body	=	s1.GetBodies(0)	Dim	sb2	As
NXOpen.Body	=	s2.GetBodies(0)	Dim	union	As	NXOpen.Features.BooleanFeature	=	NXOpen.Guide.Unite(sb1,	sb2)	Dim	unionBody	As	NXOpen.Body	=	union.GetBodies(0)	Dim	volume	As	Double	=	'	■	Units	The	parameters	of	features	are	typically	described	by	expressions,	as	discussed	below.	But	expressions	involve	units,	so	first	we	have	to
understand	units.	In	each	part	file,	there	is	a	UnitCollection,	which	has	an	associated	collection	of	“measures”.	Typical	measures	are	things	like	length,	volume,	mass,	angle,	or	velocity.	These	are	also	called	Dimensionality	in	the	NX	docs.	Then	each	measure	has	an	associated	collection	of	units,	which	are	objects	of	type	NXOpen.Unit.	Among	these
units,	one	particular	one	is	singled	out	as	the	BaseUnit	for	that	measure.	For	example,	in	a	metric	part,	the	Base	Unit	for	the	measure	“Length”	will	be	millimeters;	this	is	the	length	unit	that	is	actually	used	for	representing	objects	in	the	part	file.	Typically,	we	obtain	the	measures	and	units	for	the	UnitCollection	of	the	work	part	using	code	like	this:	'
Get	the	UnitCollection	of	the	work	part	Dim	unitCollection	As	NXOpen.UnitCollection	=	workPart.UnitCollection	'	Get	the	measures	of	this	UnitCollection	--	"Length",	"Area”,	"Mass",	etc.	Dim	measureTypes	As	String()	=	unitCollection.GetMeasures	'	Get	the	available	units	for	the	measure	"Length"	Dim	units	As	NXOpen.Unit()	=
unitCollection.GetMeasureTypes("Length")	'	Get	the	base	unit	for	the	measure	"Length"	Dim	baseUnit	As	NXOpen.Unit	=	unitCollection.GetBase("Length")	A	UnitCollection	will	generally	contain	a	large	number	of	measures	(80	or	more).	A	few	of	the	less	exotic	ones,	together	with	their	base	unit	names,	are	as	follows:	Unrestricted	Getting	Started
with	NX	Open	Chapter	10:	Feature	Concepts	Page	78	Measure	Base	Unit	Name	A	Few	Other	Unit	Names	Length	MilliMeter	Meter,	Inch,	Feet,	KiloMeter,	Mile,	Micron,	Angstrom	Area	SquareMilliMeter	SquareMeter,	SquareInch,	SquareFeet,	SquareCentiMeter	Volume	CubicMilliMeter	CubicMeter,	CubicInch,	CubicFeet,	CubicCentiMeter	Mass
Kilogram	Gram,	Tonne,	Slug,	PoundSecondsSquaredPerInch,	PoundMass	Mass	Density	KilogramPerCubicMilliMeter	GramPerCubicCentiMeter,	SlugsPerCubicFeet	Time	Second	Minute,	Hour	Angle	Degrees	Radian,	Revs	Velocity	MilliMeterPerSecond	MeterPerSecond,	FeetPerSecond,	KiloMeterPerHour,	FeetPerMinute	Force	MilliNewton	Newton,
PoundForce,	Poundal	Temperature	Celsius	Fahrenheit,	Kelvin,	Rankine	Energy	MicroJoule	EnergyPoundForceInch,	Joule,	Btu	You	can	use	the	unit	names	to	obtain	other	units	(other	than	the	base	units)	from	the	FindObject	function	'	Get	the	units	named	"MilliMeter",	"Radian",	and	"Kilogram"	Dim	mmUnit	As	NXOpen.Unit	=
workPart.UnitCollection.FindObject("MilliMeter")	Dim	radianUnit	As	NXOpen.Unit	=	workPart.UnitCollection.FindObject("Radian")	Dim	kgUnit	As	NXOpen.Unit	=	workPart.UnitCollection.FindObject("Kilogram")	Note	that	the	names	used	here	are	case	sensitive	—	for	example,	you	have	to	use	“MilliMeter”,	not	“Millimeter”,	and	“Kilogram”	rather
than	“kilogram”	or	“KiloGram”.	■	Expressions	Expressions	are	used	to	control	the	sizes	and	positions	of	features,	so	it’s	important	for	us	to	know	how	to	work	with	them.	The	general	form	of	an	expression	is	name	=	right-hand-side	To	understand	the	details,	let’s	look	at	some	example	expressions	defined	in	interactive	NX:	The	third	of	these	is	the
most	interesting.	It	has	three	important	pieces,	indicated	by	the	colored	boxes:	capacity	=	pi()*depth*(diam/2)^2	Unrestricted	Getting	Started	with	NX	Open	Chapter	10:	Feature	Concepts	//	Volume	of	water	Page	79	The	overall	text	string	is	called	the	“equation”	of	the	expression	(the	pink	box),	the	portion	to	the	left	of	the	equals	sign	is	called	the
“name”	(the	green	box),	and	the	portion	to	right	of	the	equals	sign	is	called	the	“right-hand	side”	(the	yellow	box).	So,	in	this	example:		Equation	is:	“capacity	=	pi()*depth*(diam/2)^2	//	Volume	of	water”		Name	is:	“capacity”		Right-hand-side	is:	“pi()*depth*(diam/2)^2	//	Volume	of	water”	As	you	can	see,	the	right-hand-side	includes	a	comment	that	is
delineated	by	two	slash	characters.	The	portion	of	the	right-hand-side	preceding	the	comment	must	be	a	legal	formula	involving	numbers,	functions,	and	names	of	other	expressions.	NX	builds	many	expressions	behind	the	scenes	as	you	create	features.	Expressions	created	this	way	will	typically	look	something	like	this:	The	second	expression	has	a
simple	name	(just	“p0”),	which	was	made	up	by	NX.	But	there	is	also	some	extra	text	in	parentheses	following	this	name.	This	extra	text	is	called	the	“description”	of	the	expression,	and	it	consists	of	a	feature	name	plus	a	“descriptor”	indicating	which	feature	parameter	the	expression	controls.	In	summary:	String	Name	Meaning	p0	Name	The	name
of	the	expression	(made	up	by	NX)	Diameter	Descriptor	Indicates	that	this	expression	controls	a	diameter	parameter	(Cylinder(2)	Diameter)	Description	Specifically,	it	controls	the	diameter	of	Cylinder(2)	If	an	expression	does	not	control	a	feature,	then	its	Description	and	Descriptor	strings	will	be	empty	(zero	length	strings).	All	of	these	various
elements	of	an	expression	can	be	controlled	using	NX	Open	functions,	as	follows:	Function/Property	Purpose	Description	Gets	the	description	of	the	expression	EditComment()	Changes	the	comment.	Equation	Returns	the	equation	of	the	expression	in	the	form:	name	=	right_hand_side.	GetDescriptor()	Returns	the	descriptor	for	the	expression
GetValueUsingUnits()	Get	the	value	of	the	expression,	in	either	base	units	or	the	expression's	units.	Name	Gets	the	name	of	the	expression	RightHandSide	Returns	or	sets	the	right	hand	side	of	the	expression.	SetName()	Sets	the	name	of	the	expression.	Type	A	string	indicating	the	type	of	expression,	which	can	be	Number,	String,	Integer,	Boolean,
Vector,	Point,	or	List.	Units	Returns	or	sets	the	units	for	the	expression.	Value	Returns	or	sets	the	value	of	the	expression	in	base	units.	Unrestricted	Getting	Started	with	NX	Open	Chapter	10:	Feature	Concepts	Page	80	Note	that	setting	the	Value	property	will	also	change	the	value	of	the	RightHandSide	property.	For	example,	if	you	set	Value	=	3.5,
then	the	RightHandSide	string	will	become	"3.5".	Similarly,	setting	the	RightHandSide	property	will	cause	the	Value	property	to	change	accordingly.	The	following	code	cycles	through	all	the	expressions	in	the	work	part	and	writes	out	some	of	their	properties:	For	Each	exp	As	NXOpen.Expression	In	workPart.Expressions	Dim	sep	=	"	;	"
Guide.InfoWrite(exp.Name	&	sep)	Guide.InfoWrite(exp.Equation	&	sep)	Guide.InfoWrite(exp.Description	&	sep)	Guide.InfoWrite(exp.GetDescriptor	&	sep)	Guide.InfoWriteLine(exp.Value)	Next	If	we	execute	this	code	with	a	work	part	that	contains	the	following	three	expressions	the	results	will	be:	Name	Equation	Description	Descriptor	Value	p2
p0=2*radius	(Cylinder(2)	Diameter)	Diameter;	30	p1	p1=10	(Cylinder(2)	Height)	Height;	10	radius	radius=15	//Internal	radius	15	The	radius	expression	does	not	(directly)	control	a	feature,	so	its	Description	and	Descriptor	strings	are	empty.	Also,	note	the	mysterious	semi-colon	at	the	end	of	the	two	descriptor	strings.	■	Creating	Expressions
Functions	for	creating	expressions	are	provided	in	the	ExpressionCollection	class,	as	follows:	Function	Creates	…	Create(String)	An	expression	CreateExpression(String,	String)	An	expression	of	the	specified	type.	CreateWithUnits(String,	Unit)	An	expression	with	units.	CreateSystemExpression(String)	A	system	expression.
CreateSystemExpression(String,	String)	A	system	expression	of	the	specified	type.	CreateSystemExpressionWithUnits(String,	Unit)	A	system	expression	with	units.	When	creating	expressions	of	a	specified	type,	the	type	is	indicated	by	a	string,	which	can	be	one	of	“Number”,	“String”,	“Boolean”,	“Integer”,	“Point”	or	“Vector”.	The	following	code
shows	how	these	functions	are	used:	Unrestricted	Getting	Started	with	NX	Open	Chapter	10:	Feature	Concepts	Page	81	Dim	mmUnit	As	NXOpen.Unit	=	workPart.UnitCollection.GetBase("Length")	Dim	cmUnit	As	NXOpen.Unit	=	workPart.UnitCollection.FindObject("CentiMeter")	'	Get	the	ExpressionCollection	of	the	work	part	Dim	exps	As
NXOpen.ExpressionCollection	=	workPart.Expressions	'	Create	three	expressions	Dim	exp1	=	exps.Create("x1	=	4")	Dim	exp2	=	exps.CreateExpression("Integer",	"n2	=	4")	Dim	exp3	=	exps.CreateWithUnits("x3	=	n2	+	sqrt(n2)",	mmUnit)	'	Create	three	system	expressions	Dim	sysExp4	=	exps.CreateSystemExpression("x4	=	7")	Dim	sysExp5	=
exps.CreateSystemExpression("Integer",	"n5	=	9")	Dim	sysExp6	=	exps.CreateSystemExpressionWithUnits("x6	=	n5	+	2.75",	cmUnit)	System	expressions	are	less	permanent	than	ordinary	(non-system)	ones.	A	system	expression	will	be	deleted	when	the	last	feature	using	it	is	deleted,	and	it	will	also	be	deleted	by	the	Delete	Unused	Expressions
function,	which	is	usually	the	behavior	that’s	desirable.	If	you	don’t	specify	a	unit	when	creating	an	expression,	or	you	specify	a	unit	of	Nothing,	you	get	an	expression	that	is	“constant”.	Despite	the	name,	this	doesn’t	mean	the	expression	value	is	fixed,	it	just	means	that	it	represents	a	dimensionless	quantity,	like	an	angle	or	a	parameter	percentage
on	a	curve.	So,	the	most	useful	function	of	the	six	mentioned	above	is	CreateSystemExpressionWithUnits,	and	you	will	see	this	function	many	times	in	recorded	journals.	When	writing	code	that	creates	expressions,	you	have	to	bear	in	mind	that	they	must	have	unique	names.	This	can	be	inconvenient	during	debugging	—	if	you	run	the	same	code
twice	in	the	same	part	file,	you’ll	get	an	error	message	telling	you	that	“The	specified	expression	variable	already	exists”.	To	avoid	this,	delete	the	previously	created	expressions	before	re-executing	your	code.	■	Using	Expressions	to	Define	Features	In	chapter	8,	we	saw	many	examples	of	code	defining	the	values	of	feature	parameters.	Typically,	it
looked	something	like	the	following:	'	Create	a	CylinderBuilder	Dim	builder	=	workPart.Features.CreateCylinderBuilder(Nothing)	'	Define	the	cylinder	diameter	and	height	builder.Diameter.RightHandSide	=	"4.0"	builder.Height.RightHandSide	=	"6.0"	This	will	cause	the	creation	of	two	expressions	that	we	can	use	to	modify	the	diameter	and	height	of
the	cylinder,	but	this	form	of	editing	is	rather	dull	and	uninteresting.	Suppose	we	wanted	a	more	intelligent	cylindrical	container	that	let	us	specify	its	depth	and	volume,	and	then	calculated	the	required	diameter.	We	could	achieve	this	with	the	following	code:	Dim	Dim	Dim	Dim	volume	=	100	depth	=	4	pi	=	System.Math.PI	diameter	=	2	*
System.Math.Sqrt(volume	/	(depth*pi))	builder.Height.RightHandSide	=	depth.ToString	builder.Diameter.RightHandSide	=	diameter.ToString	We	have	now	defined	the	diameter	of	the	cylinder	as	a	function	of	its	depth	and	volume:	volume	diameter	=	2√	depth	∗		Unrestricted	Getting	Started	with	NX	Open	Chapter	10:	Feature	Concepts	Page	82	So,
we	could	display	a	small	dialog	asking	the	user	to	enter	the	desired	volume	and	depth,	and	the	code	above	would	create	a	cylindrical	container	with	the	correct	volume.	However,	this	would	still	produce	a	relatively	“dumb”	NX	model	—	if	the	user	subsequently	edited	the	cylinder’s	height	or	diameter	in	interactive	NX,	the	volume	would	no	longer	be
correct.	We	have	the	right	“intelligence”	in	our	code,	but	it	did	not	get	transferred	into	the	NX	model	we	built.	If	we	want	to	build	models	that	support	convenient	interactive	editing,	we	need	to	use	expressions	to	build	in	the	desired	behavior.	We	could	achieve	this	as	follows:	Dim	mmUnit	As	NXOpen.Unit	=	workPart.UnitCollection.GetBase("Length")
Dim	mm3Unit	As	NXOpen.Unit	=	workPart.UnitCollection.GetBase("Volume")	workPart.Expressions.CreateSystemExpressionWithUnits("volume	=	100",	mm3Unit)	workPart.Expressions.CreateSystemExpressionWithUnits("depth	=	4",	mmUnit)	Dim	formula	As	String	=	"diameter	=	2*	sqrt(volume	/	(depth*pi()))"
workPart.Expressions.CreateSystemExpressionWithUnits(formula,	mmUnit)	builder.Height.RightHandSide	=	"depth"	builder.Diameter.RightHandSide	=	"diameter"	The	two	code	examples	show	two	different	ways	to	capture	“intelligence”:	in	the	first	case	the	intelligence	is	solely	in	our	code,	and	in	the	second	case	it	has	been	captured	in
expressions.	The	first	approach	is	simpler,	but	the	code	will	need	to	be	re-executed	if	any	of	the	inputs	change.	In	the	second	approach,	the	logic	in	our	code	has	essentially	been	replicated	with	NX	expressions,	which	will	“replay”	automatically	if	any	inputs	change.	Unrestricted	Getting	Started	with	NX	Open	Chapter	10:	Feature	Concepts	Page	83
Chapter	11:	Assemblies	■	Introduction	Unless	you’re	in	the	brick	business,	most	of	your	products	will	probably	be	assemblies	—	combinations	of	simpler	lower-level	items,	rather	than	just	homogeneous	hunks	of	material.	This	chapter	outlines	how	NX	represents	assemblies,	and	describes	the	NX	Open	functions	that	you	can	use	to	work	with	them.
Most	of	the	discussion	is	related	to	reading	information	about	assemblies,	rather	than	creating	them,	since	the	most	common	applications	involve	extracting	information	and	writing	reports	of	one	sort	or	another.	Typically,	your	code	will	traverse	though	the	items	in	an	assembly,	gathering	information	(from	attributes,	usually),	and	writing	this	into	a
report	document	of	some	kind.	Many	of	the	code	examples	given	below	are	just	fragments,	as	usual.	Complete	working	code	and	the	part	files	for	a	simple	car	assembly	are	provided	in	the	folder	[…NX]\UGOPEN\SNAP\Examples\More	Examples\CarAssembly.	Note	that	some	of	the	code	in	this	chapter	will	work	properly	only	if	the	car	assembly	is	fully
loaded.	■	The	Obligatory	Car	Example	Following	the	time-honored	traditions	of	assembly	modeling,	we	will	use	a	simple	car	as	an	example	throughout	this	chapter	(though	this	version	looks	more	like	a	van,	actually).	As	you	can	see,	the	car	consists	of	an	engine	(the	green	block),	an	exterior	shape	(the	blue	thing),	two	axles,	and	a	spare	wheel.	Each
axle	consists	of	a	shaft	and	two	wheels.	The	exterior	shape	is	a	sheet	body	in	Car_Assembly.prt,	so	you	don’t	see	it	in	the	Assembly	Navigator.	Similarly,	the	red	shaft	is	a	solid	body	in	Axle_Assembly.prt,	so	you	don’t	see	this,	either.	■	Trees,	Roots,	and	Leaves	Let’s	use	our	car	model	to	explain	some	terminology.	Graphically,	its	structure	looks	like
this:	Car	Axle	Front	Axle	Left	wheel	Rear	Axle	Right	wheel	Wheel	Spare	Wheel	Engine	Unrestricted	Getting	Started	with	NX	Open	Chapter	11:	Assemblies	Page	84	This	diagram	accurately	reflects	the	structure	of	the	data	stored	in	NX.	Notice	that	the	wheel	part	is	stored	only	once,	even	though	the	car	has	five	wheels	(the	four	main	ones	and	a	spare).
However,	diagrams	like	this	are	difficult	to	draw,	in	more	complex	situations,	so	we	will	usually	draw	them	as	shown	below,	instead,	with	items	repeated:	Car	Front	Axle	Wheel	Wheel	Rear	Axle	Wheel	Wheel	Spare	Wheel	Engine	The	top-level	car	assembly	has	four	subassemblies:	two	axles,	a	spare	wheel,	and	an	engine.	The	axle	assembly,	in	turn,	has
two	subassemblies,	namely	its	left	and	right	wheels.	In	this	situation,	the	axles,	spare	wheel	and	engine	are	said	to	be	children	of	the	car	assembly.	Or	looking	at	it	the	other	way	around,	the	car	assembly	is	said	to	be	the	parent	of	each	of	these	four.	This	human-family	terminology	can	be	extended	further:	we	might	say	that	each	of	the	four	main
wheels	is	a	grandchild	of	the	car	assembly,	and	all	the	parts	shown	are	descendants,	and	so	on.	Note	that	this	is	the	reverse	of	feature	terminology.	In	the	feature	modeling	world,	if	object-A	and	object-B	are	constituents	of	object-C	(in	the	sense	that	they	are	used	to	create	object-C),	then	they	are	called	the	parents	of	object-C,	not	its	children.	This
inconsistency	is	unfortunate,	but	it’s	very	well	established,	and	is	not	likely	to	change,	so	we	have	to	live	with	it.	In	addition	to	the	parent-child	terminology,	there	are	some	useful	terms	that	we	can	borrow	from	computer	science.	A	computer	scientist	would	regard	the	assembly	structure	as	a	tree,	and	the	various	parts	and	assemblies	would	be	called
the	nodes	in	the	tree.	The	node	at	the	top	of	a	sub-tree	(denoted	by	the	symbol	in	the	diagram)	is	called	the	root	node	of	that	sub-tree.	Nodes	at	the	bottom	(like	the	wheels	and	engine)	are	called	leaf	nodes;	these	are	easy	to	identify	because	they	have	no	children.	Trees	in	computer	science	are	strange	—	their	roots	are	always	at	the	top,	and	their
leaves	are	at	the	bottom	.	In	engineering,	a	leaf	node	in	an	assembly	tree	is	sometimes	referred	to	as	a	piece	part.	This	is	a	somewhat	misleading	term	because	it	suggests	that	the	part	consists	of	a	single	solid	body,	which	is	not	always	true.	To	avoid	any	possible	misunderstandings,	we	will	use	the	term	“leaf”	in	this	document.	We	can	measure	the
depth	of	a	node	in	a	tree	by	counting	its	ancestors,	including	parents,	grandparents,	and	so	on,	up	to	the	root	node	of	the	tree.	So,	in	our	car	example,	the	car	itself	is	at	depth	zero,	the	axles	and	engine	are	at	depth	=	1,	and	the	four	main	wheels	are	at	depth	=	2.	In	NX	documentation,	nodes	with	depth	=	1	(i.e.	immediately	below	the	root	node)	are
sometimes	known	as	“top	level”	nodes.	■	Components	and	Prototypes	Suppose	we	have	an	assembly,	and	we	want	to	write	out	a	report	describing	its	structure.	Each	part	knows	about	its	child	subassemblies,	so	we	could	do	this	by	writing	code	that	“walks”	from	part	to	part,	recording	the	parent-child	relationships.	We	would	start	at	the	top	of	the
tree	with	the	car	assembly	file.	Using	the	information	in	this	file,	we	would	find	out	that	there	are	four	children,	and	we	could	“walk”	to	each	of	these	four	children	to	get	information	about	grandchildren,	and	so	on.	This	process	would	certainly	work,	but	it	has	a	problem	—	we	have	to	open	each	part	file	so	that	we	can	look	inside	to	get	information
about	its	children.	Opening	hundreds	of	part	files	might	be	very	slow	(depending	on	their	locations),	and	we	may	not	even	have	permission	to	open	some	of	them,	so	we	need	a	better	way.	Unrestricted	Getting	Started	with	NX	Open	Chapter	11:	Assemblies	Page	85	The	NX	solution	is	to	store	a	replica	of	the	assembly	tree	within	each	part	file,	as
shown	here:	Car_Assembly	ROOT	FRONT_AXLE	FRONT_LEFT_WHEEL	FRONT_RIGHT_WHEEL	REAR_AXLE	REAR_LEFT_WHEEL	REAR_RIGHT_WHEEL	SPARE_WHEEL	ENGINE	The	yellow	items	are	called	“Components”	or	sometimes	“Part	Occurrences”.	The	tree	of	components	inside	a	part	file	replicates	the	tree	structure	of	the	subassemblies
themselves.	So,	if	we	want	to	know	about	this	structure,	we	can	simply	traverse	through	the	tree	of	component	objects	in	the	file,	without	opening	any	other	part	files.	An	NX	part	file	that	represents	an	assembly	has	a	ComponentAssembly	object	that	provides	most	of	the	functions	related	to	assemblies.	The	ComponentAssembly	object	has	a
RootComponent	object,	which	serves	as	the	root	node	for	the	part’s	tree	of	components.	You	can	get	to	all	the	other	components	in	the	part	file	by	traversing	downwards	from	the	RootComponent.	The	RootComponent	will	be	Nothing	if	the	part	file	is	not	an	assembly.	Each	component	contains	a	list	of	links	to	its	children,	a	link	to	its	parent,	and	a	link
to	the	corresponding	part	file,	which	is	called	the	Prototype	of	the	component.	In	the	diagram	below,	the	parent-child	relationships	are	shown	by	the	blue	lines,	and	the	component-to-prototype	links	are	shown	as	red	arrows:	Car	Axle	ROOT	ROOT	FRONT-AXLE	LEFT-WHEEL	FRONT-LEFT-WHEEL	RIGHT-WHEEL	FRONT-RIGHT-WHEEL	Wheel	Wheel
Wheel	Axle	REAR-AXLE	ROOT	LEFT-WHEEL	REAR-LEFT-WHEEL	RIGHT-WHEEL	REAR-RIGHT-WHEEL	SPARE-WHEEL	Wheel	ENGINE	Engine	Wheel	Wheel	So,	for	example,	as	you	can	see,	the	axle	part	is	the	prototype	corresponding	to	each	of	the	components	FRONT_AXLE	and	REAR_AXLE.	Or,	looking	at	it	the	other	way	around,	FRONT_AXLE
and	REAR_AXLE	are	occurrences	of	the	axle	part.	Unrestricted	Getting	Started	with	NX	Open	Chapter	11:	Assemblies	Page	86	As	mentioned	before,	a	root	component	is	not	a	“real”	component,	so	its	prototype	link	has	a	special	meaning	—	it	“loops	back”	and	refers	the	part	in	which	the	root	component	resides.	This	correspondence	between
components	and	their	associated	prototype	parts	is	also	displayed	in	the	Assembly	Navigator,	as	shown	here:	In	NX	Open,	components	are	represented	by	NXOpen.Assemblies.Component	objects,	whose	most	important	properties	and	methods	are	summarized	in	the	table	below:	Property	or	Method	Description	Parent	Gets	the	parent	component	of
this	component	GetChildren	Returns	an	array	containing	the	child	components	of	this	component	Prototype	The	prototype	part	of	this	component	GetPosition	Gets	the	position/orientation	of	this	component	in	the	parent	part	(discussed	later)	Many	additional	properties	and	methods	are	inherited	from	NXOpen.DisplayableObject.	For	example,	you	can
change	the	color	of	a	component,	hide	it,	move	it	between	layers,	assign	attributes	to	it,	and	so	on.	■	Cycling	Through	An	Assembly	There	are	many	situations	where	it	is	useful	to	cycle	through	all	the	subassemblies	of	a	given	assembly,	doing	some	operation	on	each	of	them.	To	do	this,	you	use	a	programming	technique	called	recursion.	The	basic
idea	is	to	write	a	recursive	function,	which	is	one	that	calls	itself.	This	might	sound	like	a	strange	idea,	but	it	provides	a	very	convenient	way	of	traversing	a	tree,	as	in	the	following	code:	Public	Shared	Sub	Main()	Dim	session	=	NXOpen.Session.GetSession	Dim	workPart	As	NXOpen.Part	=	session.Parts.Work	Dim	root	=
workPart.ComponentAssembly.RootComponent	DoSomething(root)	End	Sub	Public	Shared	Sub	DoSomething(comp	As	NXOpen.Assemblies.Component)	Guide.InfoWriteLine(comp.Name)	For	Each	child	In	comp.GetChildren	DoSomething(child)	Next	End	Sub	As	you	can	see,	the	DoSomething	function	is	recursive	—	it	calls	itself.	So,	what	happens
when	the	system	executes	the	line	of	code	that	says	DoSomething(root)	in	the	Main	function?	Well,	first	of	all,	the	name	of	the	root	component	will	be	written	out.	Then,	DoSomething	is	applied	to	each	of	the	children	of	root,	causing	their	component	names	to	be	written	out.	But,	then,	through	the	magic	of	recursion,	applying	DoSomething	to	a	child
causes	DoSomething	to	be	applied	to	its	children,	in	turn,	and	so	on.	In	the	end,	the	result	is	that	DoSomething	gets	applied	to	all	the	descendants	of	root,	so	all	of	their	names	are	written	to	the	Info	window.	Of	course,	in	practice,	you	would	probably	replace	the	Guide.InfoWriteLine	call	with	some	more	interesting	code,	but	the	principle	would	be
exactly	the	same.	Unrestricted	Getting	Started	with	NX	Open	Chapter	11:	Assemblies	Page	87	■	Indented	Listings	Listings	of	parts	in	an	assembly	are	easier	to	understand	if	they	are	indented,	since	the	indentation	makes	the	hierarchical	structure	more	visible.	First,	a	simple	function	that	creates	a	string	of	spaces	for	use	in	indenting:	Public	Shared
Function	Indent(level	As	Integer)	As	String	Dim	space	As	Char	=	"	"c	return	new	String(space,	3*level)	'	Indent	3	spaces	for	each	level	End	Function	Once	we	have	this	function,	creating	indented	listings	is	straightforward.	The	key	is	to	keep	track	of	our	current	“depth”	as	we	cycle	through	the	assembly.	We	use	a	global	variable	called	Depth	to	do
this.	So,	each	time	we	descend	a	level,	we	increment	our	depth	(Depth	=	Depth	+	1),	and	each	time	we	pop	back	up	a	level,	we	decrement	it	(Depth	=	Depth	–	1).	We	modify	our	DoSomething	function	as	follows:	Public	Shared	Sub	DoSomething(comp	As	NXOpen.Assemblies.Component)	Depth	=	Depth	+	1	Dim	indentString	As	String	=	Indent(Depth)
Dim	compName	As	String	=	comp.Name	Guide.InfoWriteLine(indentString	&	compName)	For	Each	child	In	comp.GetChildren	DoSomething(child)	Next	Depth	=	Depth	-	1	End	Sub	Then,	if	we	make	Car_Assembly.prt	our	work	part,	and	call	this	function	recursively,	as	before,	we	get	the	following	nicely	indented	listing:	ENGINE	SPARE_WHEEL
REAR_AXLE	REAR_RIGHT_WHEEL	REAR_LEFT_WHEEL	FRONT_AXLE	FRONT_RIGHT_WHEEL	FRONT_LEFT_WHEEL	■	Component	Positions	&	Orientations	When	you	insert	a	part	into	an	assembly,	it	is	typically	re-positioned	and	re-oriented	somehow.	The	position	and	orientation	information	is	held	within	an	NX	component	object,	and	you	can
retrieve	it	as	follows:	Public	Shared	Sub	DoSomething(comp	As	NXOpen.Assemblies.Component)	Dim	pt	As	NXOpen.Point3d	Dim	mx	As	NXOpen.Matrix3x3	comp.GetPosition(pt,	mx)	Dim	axisZ	As	New	NXOpen.Vector3d(mx.Zx,	mx.Zy,	mx.Zz)	Guide.InfoWrite(comp.Name)	Guide.InfoWrite(";	Position	=	"	&	pt.ToString)	Guide.InfoWrite(";	AxisZ	=	"	&
axisZ.ToString	&	vbCr)	For	Each	child	In	comp.GetChildren	DoSomething(child)	Next	End	Sub	If	you	run	this	code	with	the	car	assembly	as	your	work	part,	the	resulting	listing	will	include	the	following	(tidied	up	a	little	to	improve	legibility):	Unrestricted	Getting	Started	with	NX	Open	Chapter	11:	Assemblies	Page	88	ENGINE;	SPARE_WHEEL;
REAR_AXLE;	REAR_RIGHT_WHEEL;	REAR_LEFT_WHEEL;	FRONT_AXLE;	FRONT_RIGHT_WHEEL;	FRONT_LEFT_WHEEL;	Position	Position	Position	Position	Position	Position	Position	Position	=	=	=	=	=	=	=	=	[X=0,Y=0,Z=0];	[X=0,Y=3045,Z=650];	[X=0,Y=2000,Z=0];	[X=-950,Y=2000,Z=0];	[X=950,Y=2000,Z=0];	[X=0,Y=0,Z=0];
[X=-950,Y=0,Z=0];	[X=950,Y=0,Z=0];	AxisZ	AxisZ	AxisZ	AxisZ	AxisZ	AxisZ	AxisZ	AxisZ	=	=	=	=	=	=	=	=	[X=0,Y=0,Z=1]	[X=0,Y=1,Z=0]	[X=0,Y=0,Z=1]	[X=-1,Y=0,Z=0]	[X=1,Y=0,Z=0]	[X=0,Y=0,Z=1]	[X=-1,Y=0,Z=0]	[X=1,Y=0,Z=0]	To	understand	what	this	means,	let’s	first	look	at	how	the	wheel	part	itself	was	designed.	The	left-hand	picture
below	shows	a	section	view	in	the	wheel	part.	As	you	can	see,	the	inside	center	of	the	rim	(the	purple	point	labeled	“P”)	is	at	the	origin,	and	the	rotational	axis	of	the	wheel	is	along	the	z-axis.	P	When	the	front	left	wheel	gets	inserted	into	the	car	assembly,	this	point	P	gets	placed	at	(950,	0,	0).	So,	if	comp	is	the	FRONT_LEFT_WHEEL	component,	then
comp.Position	is	(950,	0,	0).	Similarly,	the	REAR_LEFT_WHEEL	component	has	Position	=	(950,	2000,	0).	Orientations	are	a	bit	more	interesting:	when	the	front	left	wheel	gets	inserted	into	the	car	assembly,	its	z-axis	gets	aligned	with	the	x-axis	of	the	car.	So,	the	z-axis	of	the	orientation	of	the	FRONT_LEFT_WHEEL	component	is	(1,	0,	0).	On	the
right-hand	side	of	the	car,	the	wheel	is	flipped,	of	course,	so,	the	FRONT_RIGHT_WHEEL	has	its	AxisZ	in	the	opposite	direction,	equal	to	(–1,	0,	0).	Similarly,	the	SPARE_WHEEL	component	has	an	orientation	whose	z-axis	is	(0,	1,	0).	We	could	also	study	the	x-axis	and	the	y-axis	of	the	orientations	of	various	components,	of	course.	But,	in	the	case	of	an
axi-symmetric	object	like	a	wheel,	these	are	not	important.	■	Object	Occurrences	When	a	part	is	inserted	into	an	assembly,	we	know	that	an	occurrence	of	this	part	(i.e.	a	component	object)	gets	created	in	the	parent	assembly.	But,	the	story	doesn’t	end	there.	In	additional	to	the	occurrence	of	the	inserted	part	itself,	the	system	also	creates
occurrences	of	all	the	objects	inside	it.	To	understand	what	happens,	let’s	look	at	the	structure	of	the	Axle	part	in	our	car	example.	As	we	know,	this	part	contains	a	solid	body	representing	a	shaft,	plus	two	components	(LEFT_WHEEL	and	RIGHT_WHEEL)	which	are	occurrences	of	Wheel_Part.	The	wheel	part	contains	two	solid	bodies	called
TIRE_BODY	and	RIM_BODY.	The	structure	is	shown	in	the	diagram	below:	Unrestricted	Getting	Started	with	NX	Open	Chapter	11:	Assemblies	Page	89	Axle_Assembly	ROOT	Wheel_Part	LEFT_WHEEL	LEFT_WHEEL_TIRE_BODY	TIRE_BODY	LEFT_WHEEL_RIM_BODY	RIM_BODY	Wheel_Part	RIGHT_WHEEL	RIGHT_WHEEL_TIRE_BODY	TIRE_BODY
RIGHT_WHEEL_RIM_BODY	RIM_BODY	SHAFT_BODY	Looking	at	the	top	half	of	the	diagram,	we	see	that	the	wheel	part	has	been	inserted	into	the	axle	assembly.	As	a	result	of	this,	a	part	occurrence	called	LEFT_WHEEL	has	been	created	in	the	Axle_Assembly	part.	But,	in	addition	to	this,	we	see	the	pink	boxes,	LEFT_WHEEL_TIRE_BODY	and
LEFT_WHEEL_RIM_BODY.	These	are	object	occurrences;	LEFT_WHEEL_TIRE_BODY	is	an	occurrence	of	TIRE_BODY,	and	LEFT_WHEEL_RIM_BODY	is	an	occurrence	of	RIM_BODY.	We	say	that	these	object	occurrences	are	members	of	the	LEFT_WHEEL	component,	as	indicated	by	the	green	lines.	The	red	arrows	show	how	part	and	object
occurrences	both	refer	back	to	the	original	objects,	which	are	called	their	prototypes.	Only	solid	bodies	are	shown	in	the	diagram,	but,	in	fact,	the	LEFT_WHEEL	component	will	have	members	that	are	occurrences	of	all	the	objects	in	the	wheel	part.	In	many	ways,	the	LEFT_WHEEL_TIRE_BODY	occurrence	looks	and	behaves	just	like	a	normal	solid
body	in	the	axle	part.	You	can	blank	it,	move	it	to	another	layer,	assign	attributes	to	it,	or	even	calculate	its	weight	and	center	of	gravity.	But,	on	the	other	hand	it	is	fundamentally	different	from	SHAFT_BODY,	which	is	a	“real”	solid	body.	The	difference	is	that	SHAFT_BODY	includes	its	own	geometric	data,	whereas	LEFT_WHEEL_TIRE_BODY	merely
has	links	to	geometric	data	that	actually	reside	in	the	wheel	part.	So,	in	some	sense,	an	occurrence	is	a	“phantom”	or	“proxy”	object,	rather	than	a	“real”	one.	Or,	borrowing	some	terminology	from	Microsoft	Office	products,	we	might	say	that	an	occurrence	is	a	“linked”	object,	whereas	a	“real”	object	like	SHAFT_BODY	is	an	“embedded”	one.	The
technology	used	in	NX	is	completely	different,	but	the	basic	concept	is	similar.	The	diagram	below	shows	the	difference	between	the	data	structures	of	occurrence	and	“real”	objects,	using	a	simple	example	of	three	point	objects	in	the	axle	and	wheel	parts:	Axle_Assembly	Point1	Type:	Point	Color:	Red	Layer:	25	Wheel_Part	Point2	Type:	Point	Color:
Blue	Layer:	26	Point3	Type:	Point	Color:	Green	Layer:	27	X:	1.00000	Y:	3.00000	Z:	5.00000	X:	6.00000	Y:	7.00000	Z:	9.00000	Point1	is	embedded	in	the	axle	part,	and	Point2	is	an	occurrence	whose	prototype	(Point3)	resides	in	the	wheel	part.	As	usual,	green	boxes	denote	“real”	embedded	objects	and	pink	ones	denote	occurrences.	As	you	can	see,
Point2	has	a	color	and	a	layer,	but	it	has	no	coordinate	data	of	its	own.	Whenever	we	ask	for	the	coordinates	of	Point2,	they	will	be	derived	by	suitably	transforming	the	coordinates	of	Point3.	The	diagram	above	illustrates	another	important	fact:	even	though	Point2	is	an	occurrence,	its	object	type	is	still	“Point”.	There	is	no	special	“occurrence”	type
in	NX;	any	NX	object	can	either	be	an	occurrence	(a	linked	object),	or	a	“real”	local	embedded	one.	An	NXOpen.NXObject	has	a	property	IsOccurrence,	which	allows	you	to	find	out	whether	or	not	it’s	an	occurrence.	Then,	if	IsOccurrence	is	True,	there	are	ProtoType	and	OwningComponent	properties	with	the	obvious	meanings.	Unrestricted	Getting
Started	with	NX	Open	Chapter	11:	Assemblies	Page	90	To	find	object	occurrences,	we	need	to	use	an	NXOpen.UF	function	to	cycle	through	a	part.	This	cycling	function	works	with	tags,	so	first	let’s	create	a	little	helper	function	that	gets	an	NXOpen.NXObject	from	a	tag:	Public	Shared	Function	ObjectFromTag(tag	As	NXOpen.Tag)	As
NXOpen.NXObject	Dim	obj	As	NXOpen.TaggedObject	=	NXOpen.Utilities.NXObjectManager.Get(Tag)	Dim	nxObject	As	NXOpen.NXObject	=	CType(obj,	NXOpen.NXObject)	Return	nxObject	End	Function	Then	you	can	use	the	following	code	to	cycle	through	the	work	part	reporting	on	object	occurrences:	Dim	ufs	As	NXOpen.UF.UFSession	=
NXOpen.UF.UFSession.GetUFSession	Dim	nextTag	As	NXOpen.Tag	=	NXOpen.Tag.Null	Dim	obj	As	NXOpen.NXObject	=	Nothing	Do	nextTag	=	ufs.Obj.CycleAll(workPart.Tag,	nextTag)	If	nextTag	=	NXOpen.Tag.Null	Then	Return	obj	=	ObjectFromTag(nextTag)	If	obj.IsOccurrence	And	TypeOf	obj	Is	NXOpen.Body	Dim	occName	As	String	=	obj.Name
Dim	protoName	As	String	=	obj.Prototype.Name	Guide.InfoWrite("Occurrence:	"	&	occName	&	"	;	")	Guide.InfoWrite("Owning	component:	"	&	obj.OwningComponent.Name	&	"	Guide.InfoWriteLine("Prototype:	"	&	protoName)	End	If	;	")	Loop	Since	this	code	is	only	examining	objects	of	type	NXOpen.Body,	you	may	be	wondering	why	we	didn’t	simply
cycle	through	the	workPart.Bodies	collection.	This	would	be	simpler	because	we	wouldn’t	have	to	concern	ourselves	with	tags.	However,	if	you	cycle	through	workPart.Bodies,	you	won’t	find	bodies	that	are	occurrences,	you	will	only	find	the	ones	that	are	embedded	in	the	work	part.	If	you	run	the	code	above	with	Axle_Assembly.prt	as	your	work	part,
the	output	will	be	as	follows:	Occurrence:	Occurrence:	Occurrence:	Occurrence:	RIGHT_TIRE_BODY	RIGHT_RIM_BODY	LEFT_TIRE_BODY	LEFT_RIM_BODY	;	;	;	;	Owning	Owning	Owning	Owning	component:	component:	component:	component:	RIGHT-WHEEL	RIGHT-WHEEL	LEFT-WHEEL	LEFT-WHEEL	;	;	;	;	Prototype:	Prototype:	Prototype:
Prototype:	TIRE_BODY	RIM_BODY	TIRE_BODY	RIM_BODY	■	Creating	an	Assembly	The	most	common	way	to	create	an	assembly	is	to	insert	parts	as	components	into	a	parent	assembly	file.	We	will	use	this	technique	to	create	the	assembly	shown	below.	It	is	a	simple	circular	door	assembly,	as	you	might	find	in	a	submarine	or	space	ship,	consisting
of	a	circular	plate	with	a	“grip”	or	handle	located	at	its	center.	In	the	folder	[…NX]\UGOPEN\NXOpen\Examples\SimpleParts.	you	will	find	two	part	files	called	door.prt	and	grip.prt	that	we	will	use	to	create	the	assembly.	Unrestricted	Getting	Started	with	NX	Open	Chapter	11:	Assemblies	Page	91	door.prt	grip.prt	Z	Z	P	X	X	The	point	P	where	the	base
of	the	handle	is	located	(the	red	point)	has	coordinates	(0,0,1).	Combining	these	two	parts	to	form	the	assembly	shown	above	is	very	easy	because	the	“door”	and	“grip”	objects	are	already	located	correctly	in	space.	This	is	not	an	unusual	situation	—	quite	a	few	companies	design	components	in	“absolute	position”	so	that	no	further	positioning	is
required	when	they	are	assembled	into	products.	So,	to	create	a	new	assembly	file	and	add	these	two	parts	to	it,	we	proceed	as	follows:	'	Create	a	new	assembly	file,	and	make	it	the	work	part	Dim	mm	As	NXOpen.Part.Units	=	NXOpen.Part.Units.Millimeters	Dim	doorAssy	As	NXOpen.Part	=	session.Parts.NewDisplay("C:\Temp\doorAssy.prt",	mm)
session.Parts.SetWork(doorAssy)	Dim	Dim	Dim	Dim	compAssy	As	NXOpen.Assemblies.ComponentAssembly	=	doorAssy.ComponentAssembly	status	As	PartLoadStatus	=	Nothing	origin	As	New	NXOpen.Point3d(0,0,0)	layers	As	Integer	=	-1	'	Create	an	identity	matrix	to	use	for	orientation	Dim	matrix	As	new	NXOpen.Matrix3x3	matrix.Xx	=	1	:
matrix.Xy	=	0	:	matrix.Xz	=	0	matrix.Yx	=	0	:	matrix.Yy	=	1	:	matrix.Yz	=	0	matrix.Zx	=	0	:	matrix.Zy	=	0	:	matrix.Zz	=	1	'	Add	the	two	parts	to	the	assembly	Dim	refSetName	=	"MODEL"	Dim	partFilePath	=	"C:\Temp\door.prt"	Dim	compName	As	String	=	"doorComp"	compAssy.AddComponent(partFilePath,	refSetName,	compName,	origin,	matrix,
layers,	status)	partFilePath	=	"C:\Temp\grip.prt"	compName	=	"gripComp"	compAssy.AddComponent(partFilePath,	refSetName,	compName,	origin,	matrix,	layers,	status)	The	code	assumes	that	two	files	door.prt	and	grip.prt	are	in	your	C:\Temp	folder.	You	can	either	put	them	there,	or	you	can	change	the	code	to	use	different	path	names.	The	real
work	is	done	by	the	call	to	the	AddComponent	function.	The	meanings	of	its	various	arguments	are	as	follows:	Argument	Data	Type	Description	partFilePath	String	The	pathname	of	the	part	file	to	be	inserted	as	a	new	component	refSetName	String	The	name	of	the	reference	set	to	be	used	to	represent	the	new	component	compName	String	The	name
to	be	assigned	to	the	new	component	origin	Point3d	The	location	where	the	new	component	is	to	be	placed	matrix	Matrix3x3	The	orientation	to	be	used	for	the	new	component	within	the	assembly	layers	Integer	The	layer(s)	on	which	the	component’s	member	objects	should	be	placed	status	PartLoadStatus	A	status	data	structure	that	indicates
whether	the	insertion	was	successful	Reference	sets	provide	a	way	to	use	simplified	representations	of	components	in	assemblies,	which	can	improve	performance	and	reduce	memory	usage.	You	can	read	about	these	in	the	“Assemblies”	section	of	the	NX	documentation.	You	can	either	create	your	own	custom	reference	sets,	or	you	can	use	the
standard	ones	that	NX	creates	for	you	automatically.	The	names	of	the	standard	ones	are	“MODEL”,	“Entire	Part”,	and	“Empty”.	A	little	later,	we	will	tell	you	how	to	write	code	that	replaces	one	reference	set	by	another.	The	origin	and	matrix	arguments	specify	the	position	and	orientation	of	the	component	part	in	the	assembly,	as	described	earlier	in
the	section	entitled	“Component	Positions	&	Orientations”.	In	the	example	above,	the	Unrestricted	Getting	Started	with	NX	Open	Chapter	11:	Assemblies	Page	92	positioning	and	orientation	logic	was	rather	dull	because	the	parts	were	already	in	the	correct	locations	and	did	not	need	to	be	moved;	a	more	interesting	example	is	given	below.	The	layers
argument	indicates	the	destination	layers	on	which	the	component	itself	and	its	members	(occurrence	objects)	should	be	placed.	The	meanings	of	the	available	settings	are	as	follows:	Value	Destination	Layer	for	Component	Destination	Layer	for	Component	Members	layers	=	0	Work	layer	Work	layer	layers	=	-1	Work	layer	Original	layers	(layers	of
prototype	objects)	layers	=	n	Layer	n	Layer	n	■	More	Advanced	Positioning	Suppose	now	that	we	want	to	design	a	door	with	two	grips,	a	“top”	grip	at	the	“12	o’clock”	location,	and	a	“right”	grip	at	“3	o’clock”,	as	shown	here:	Top	Grip	Right	Grip	We	create	a	new	assembly	part	and	insert	the	door	component	into	it,	just	as	before.	Next,	we	have	to
position	and	orient	the	two	handles	as	shown	below:	Y	X	Top	Grip	Y	Y	X	X	Right	Grip	The	Right	Grip	is	easy,	because	it	just	needs	to	be	translated,	not	rotated.	The	code	is	as	follows:	Unrestricted	Getting	Started	with	NX	Open	Chapter	11:	Assemblies	Page	93	Dim	Dim	Dim	Dim	path	=	"C:\Temp\grip.prt"	refSetName	=	"MODEL"	status	As
PartLoadStatus	=	Nothing	layers	As	Integer	=	-1	'	Define	the	orientation	for	the	RightGrip	(identity)	Dim	matrix1	As	new	NXOpen.Matrix3x3	matrix1.Xx	=	1	:	matrix1.Xy	=	0	:	matrix1.Xz	=	0	matrix1.Yx	=	0	:	matrix1.Yy	=	1	:	matrix1.Yz	=	0	matrix1.Zx	=	0	:	matrix1.Zy	=	0	:	matrix1.Zz	=	1	'	Define	the	location	for	RightGrip	Dim	pt1	As	New
NXOpen.Point3d(10,	0,	0)	'	Add	RightGrip	to	the	assembly	Dim	compName1	As	String	=	"rightGripComp"	Dim	rightGrip	As	NXOpen.Assemblies.Component	rightGrip	=	compAssy.AddComponent(path,	refSetName,	compName1,	pt1,	matrix1,	layers,	status)	Since	no	rotation	is	needed,	the	matrix	used	is	just	the	identity.	The	only	new	idea	here	is	the
use	of	the	point	pt1	=	(10,0,0)	to	position	the	component.	Note	that	we	used	the	point	(10,0,0),	not	(10,0,1)	because	an	offset	of	1	mm	in	the	z-direction	is	already	built	into	the	design	in	grip.prt.	The	positioning	of	TopGrip	is	a	little	more	interesting.	The	code	is:	'	Define	the	orientation	for	the	TopGrip	Dim	matrix2	As	new	NXOpen.Matrix3x3
matrix2.Xx	=	0	:	matrix2.Xy	=	1	:	matrix2.Xz	=	0	matrix2.Yx	=	-1	:	matrix2.Yy	=	0	:	matrix2.Yz	=	0	matrix2.Zx	=	0	:	matrix2.Zy	=	0	:	matrix2.Zz	=	1	'	Grip's	X-axis	is	aligned	with	(0,1,0)	'	Grip's	Y-axis	is	aligned	with	(-1,0,0)	'	Grip's	Z-axis	is	aligned	with	(0,0,1)	'	Define	the	location	for	the	TopGrip	Dim	pt2	As	New	NXOpen.Point3d(0,	10,	0)	'	Add
TopGrip	to	the	assembly	Dim	compName2	As	String	=	"topGripComp"	Dim	topGrip	As	NXOpen.Assemblies.Component	topGrip	=	compAssy.AddComponent(path,	refSetName,	compName2,	pt2,	matrix2,	layers,	status)	We	want	the	grip’s	x-axis	to	be	aligned	with	the	vector	(0,1,0)	in	the	assembly	part,	so	we	set	(Xx,	Xy,	Xz)	=	(0,1,0)	in	the	definition	of
matrix2.	The	other	two	rows	of	the	matrix	are	defined	using	similar	reasoning.	■	Changing	Reference	Sets	It’s	not	really	necessary	here,	but	there	are	times	when	you	may	want	to	use	simplified	representation	of	components	in	your	assemblies,	to	save	memory	and	improve	performance.	One	way	to	do	this	is	through	the	use	of	reference	sets.	The	file
grip.prt	includes	a	reference	set	called	“WIRE”	that	represents	the	grip	shape	just	by	using	two	lines.	We	can	swap	out	the	“MODEL”	reference	set	that	we	used	above	and	use	“WIRE”	instead.	The	code	to	perform	this	replacement	in	both	grip	components	is:	doorAssy.ComponentAssembly.ReplaceReferenceSet(rightGrip,	"WIRE")
doorAssy.ComponentAssembly.ReplaceReferenceSet(topGrip,	"WIRE")	Unrestricted	Getting	Started	with	NX	Open	Chapter	11:	Assemblies	Page	94	The	result	is	as	shown	here:	■	Other	Topics	NX	Open	has	a	very	rich	and	complex	collection	of	functions	for	working	with	assemblies.	After	reading	the	material	in	this	chapter,	you	should	be	ready	to
start	using	these	functions.	In	addition	to	the	functions	in	the	NXOpen.Assemblies	namespace,	which	we	have	used	here,	there	are	older	functions	in	the	NXOpen.UF.UFAssem	class,	along	with	several	example	programs,	and	some	useful	explanatory	notes.	One	large	topic	that	we	have	omitted	here	is	the	use	of	“constraints”	to	position	components	in
an	assembly;	to	learn	more	about	this,	please	refer	to	the	NXOpen.Positioning	namespace	in	the	NX	Open	Reference	Guide.	Unrestricted	Getting	Started	with	NX	Open	Chapter	11:	Assemblies	Page	95	Chapter	12:	Drawings	&	Annotations	This	chapter	discusses	NX	Open	functions	for	working	with	drawings	and	annotations.	■	Drawings	In	NX	Open,
functions	related	to	drawings	can	be	found	in	the	NXOpen.Drawings	namespace,	and	in	the	NXOpen.UF.UFDraw	class.	Note	that	the	documentation	for	the	NXOpen.UF.UFDraw	class	contains	many	sample	programs.	While	these	are	written	in	the	C	language,	conversion	to	other	languages	is	typically	straightforward.	A	drawing	is	represented	by	a
collection	of	NXOpen.Drawings.DrawSheet	objects	in	NX	Open.	The	set	of	all	DrawingSheet	objects	in	the	work	part	(or	any	part	file)	is	a	DrawingSheetCollection	object,	which	you	can	get	by	using	the	workPart.DrawingSheets	property.	Each	sheet	has	a	SheetDraftingViewCollection	object,	which	is	important	because	you	use	it	to	work	with	the
views	on	the	sheet	(to	create	and	delete	views,	for	example).	You	can	get	this	object	by	using	the	SheetDraftingViews	property	of	the	sheet.	Some	typical	operations	are	as	follows:	Code	Description	sheets	=	workPart.DrawingSheets	sheets.InsertSheet()	Create	a	drawing	sheet	myDrawing.Delete()	Delete	a	drawing	sheet	views	=
mySheet.SheetDraftingViews	views.CreateBaseView()	views.CreateProjectedView()	Add	a	view	to	a	drawing	sheet	views	=	mySheet.SheetDraftingViews	views.DeleteView()	Remove	a	view	from	a	drawing	sheet	sheets	=	workPart.DrawingSheets	dwg	=	sheets.CurrentDrawingSheet	Get	the	current	drawing	(sheet)	dwg.Open()	Set	the	current
drawing	(sheet)	dwg.GetDraftingViews()	Get	the	views	of	a	drawing	sheet	Here	is	a	fragment	of	typical	code:	'	Get	the	current	drawing	(sheet)	Dim	sheets	As	NXOpen.Drawings.DrawingSheetCollection	=	workPart.DrawingSheets	Dim	workSheet	As	NXOpen.Drawings.DrawingSheet	=	sheets.CurrentDrawingSheet	'	Get	the	array	of	views	on	the
current	sheet	Dim	viewArray	As	NXOpen.Drawings.DrawingView()	=	workSheet.GetDraftingViews	'	Get	the	SheetDraftingViewCollection	of	the	current	view	Dim	viewCollection	As	NXOpen.Drawings.SheetDraftingViewCollection	=	workSheet.SheetDraftingViews	'	Delete	all	the	views	on	the	current	sheet	For	Each	View	As
NXOpen.Drawings.DrawingView	In	viewArray	viewCollection.DeleteView(view)	Next	Unrestricted	Getting	Started	with	NX	Open	Chapter	11:	Assemblies	Page	96	■	Dimensions	To	create	dimensions	in	a	part,	you	use	functions	in	its	DimensionCollection	object,	which	you	can	obtain	by	using	the	Dimensions	property	of	the	part.	Simple	dimensions	can
be	created	directly;	more	complex	ones	are	created	indirectly	using	the	“builder”	pattern	that	we	have	seen	elsewhere	in	NX	Open.	Here	are	some	of	the	more	common	functions	for	creating	dimensions	(either	directly	or	via	builders):	Use	These	Functions	To	Create	CreateHorizontalDimension()	CreateVerticalDimension()
CreateLinearDimensionBuilder()	Horizontal	or	vertical	dimension	CreateParallelDimension()	Parallel	dimension	CreatePerpendicularDimension()	Perpendicular	dimension	CreateAngularDimensionBuilder()	CreateMajorAngularDimension()	CreateMajorAngularDimensionBuilder()	CreateMinorAngularDimension()
CreateMinorAngularDimensionBuilder()	Angular	dimension	CreateArcLengthDimension()	CreateCurveLengthDimensionBuilder()	Arclength	dimension	CreateCylindricalDimension()	Cylindrical	dimension	CreateRadiusDimension()	Radius	dimension	CreateFoldedRadiusDimension()	Folded	radius	dimension	CreateDiameterDimension()	Diameter
dimension	CreateHoleDimension()	Hole	dimension	CreateConcentricCircleDimension()	Concentric	circle	dimension	CreateHorizontalOrdinateDimension()	CreateVerticalOrdinateDimension()	CreateOrdinateDimensionBuilder()	Ordinate	dimension	Here	is	some	code	to	create	an	arclength	dimension	directly:	Dim	myArc	As	NXOpen.Arc	=
Snap.Create.Arc({0,0,0},	450,	0,	90)	Dim	assoc	As	NXOpen.Annotations.Associativity	=	workPart.Annotations.NewAssociativity	assoc.FirstObject	=	myArc	assoc.SecondObject	=	Nothing	assoc.ObjectView	=	workPart.Views.WorkView	assoc.PickPoint	=	New	Point3d(350,	650,	0)	Dim	dimData	As	NXOpen.Annotations.DimensionData	=
workPart.Annotations.NewDimensionData	dimData.SetAssociativity(1,	{assoc})	assoc.Dispose	Dim	origin	As	New	Point3d(370,	670,	0)	Dim	arcLengthDim	As	NXOpen.Annotations.ArcLengthDimension	arcLengthDim	=	workPart.Dimensions.CreateArcLengthDimension(dimData,	origin)	Unrestricted	Getting	Started	with	NX	Open	Chapter	13:	CAM
Page	97	Next,	here’s	how	you	do	the	same	thing	by	using	a	builder,	instead:	Dim	builder	As	Annotations.CurveLengthDimensionBuilder	builder	=	workPart.Dimensions.CreateCurveLengthDimensionBuilder(Nothing)	builder.Origin.Anchor	=	Annotations.OriginBuilder.AlignmentPosition.MidCenter	builder.Origin.Origin.SetValue(Nothing,	Nothing,
New	Point3d(370,	670,	0))	builder.Origin.SetInferRelativeToGeometry(True)	Dim	pickPoint	As	New	Point3d(350,	650,	0)	builder.FirstAssociativity.SetValue(myArc,	workPart.Views.WorkView,	pickPoint)	Dim	arcLengthDim	As	NXOpen.Annotations.ArcLengthDimension	arcLengthDim	=	builder.Commit	builder.Destroy	Arclength	dimensions	are	not
very	common,	of	course,	so	this	might	seem	like	a	strange	example	to	choose.	We	chose	it	because	arclength	dimensions	can	easily	be	created	either	directly	or	by	using	a	builder,	so	we	could	illustrate	both	approaches.	The	direct	creation	functions	might	appear	simpler,	but	the	builder	approach	provides	much	more	flexibility,	so	it’s	worth	spending
a	bit	of	extra	time	to	become	familiar	with	it.	■	Notes	To	create	a	Note,	typical	code	is:	Dim	mgr	As	NXOpen.Annotations.AnnotationManager	=	workPart.Annotations	mgr.CreateNote(…)	Unrestricted	Getting	Started	with	NX	Open	Chapter	13:	CAM	Page	98	Chapter	13:	CAM	This	chapter	provides	a	brief	introduction	to	NX	Open	functions	related	to
CAM.	To	gain	access	to	CAM	capabilities,	you	first	obtain	an	NXOpen.CAM.CAMSetup	object.	There	will	be	a	CAMSetup	object	in	every	part	file	that	you	use	for	CAM	work,	and	typical	code	to	obtain	it	(for	the	work	part)	is	as	follows:	Dim	workPart	As	Part	=	NXOpen.Session.GetSession.Parts.Work	Dim	setup	As	NXOpen.CAM.CAMSetup	=
workPart.CAMSetup	■	Cycling	Through	CAM	Objects	Cycling	through	CAM	objects	is	supported	by	two	properties	of	the	CAMSetup	object,	called	CAMOperationCollection	and	CAMGroupCollection.	These	are	completely	analogous	to	the	other	object	collections,	like	the	workPart.Points	or	workPart.Bodies	collections	that	let	you	cycle	through	points
or	bodies	respectively.	They	have	other	uses,	too,	but	we’ll	get	to	those	later.	The	CAMOperationCollection	property	gives	you	an	NXOpen.CAM.OperationCollection	object,	which	is	a	collection	of	NXOpen.CAM.Operation	objects.	These	operations	will	actually	have	more	specific	types,	such	as	MillOperation,	TurningOperation,	InspectionOperation,
HoleMaking,	and	so	on.	The	collection	is	enumerable,	so	you	can	cycle	through	the	operations	using	a	For	Each	loop,	like	this:	Dim	setup	As	NXOpen.CAM.CAMSetup	=	workPart.CAMSetup	Dim	opCollection	As	NXOpen.CAM.OperationCollection	=	setup.CAMOperationCollection	For	Each	op	As	NXOpen.CAM.Operation	In	opCollection	Dim	opType	As
System.Type	=	op.GetType	Guide.InfoWriteLine(opType.ToString)	Next	Similarly,	the	CAMGroupCollection	property	gives	you	an	NXOpen.CAM.NCGroupCollection	object,	which	is	a	collection	of	NXOpen.CAM.NCGroup	objects.	Again,	you	can	cycle	through	the	groups	using	a	For	Each	loop.	Each	NCGroup	object	might	actually	be	a	derived	type,
such	as	a	FeatureGeometry,	a	Method,	an	OrientGeometry,	or	a	Tool.	In	the	following	code,	we	cycle	through	looking	for	Tool	objects:	Dim	setup	As	NXOpen.CAM.CAMSetup	=	workPart.CAMSetup	Dim	groups	As	NXOpen.CAM.NCGroupCollection	=	setup.CAMGroupCollection	For	Each	group	As	NXOpen.CAM.NCGroup	In	groups	If	TypeOf(group)	Is
NXOpen.CAM.Tool	Then	Dim	tool	As	NXOpen.CAM.Tool	=	DirectCast(group,	NXOpen.CAM.Tool)	Dim	toolType	As	NXOpen.CAM.Tool.Types	Dim	toolSubType	As	NXOpen.CAM.Tool.Subtypes	tool.GetTypeAndSubtype(toolType,	toolSubType)	Guide.InfoWriteLine("Tool	type:	"	&	toolType.ToString)	Guide.InfoWriteLine("Tool	subtype:	"	&
toolSubType.ToString)	End	If	Next	In	both	cycling	examples,	note	how	we	used	the	standard	VB	functions	GetType	and	TypeOf	to	get	and	test	the	type	of	an	operation	or	an	NCGroup.	The	types	and	subtypes	of	tools	are	handled	in	a	different	fashion.	As	the	code	above	shows,	there	is	a	GetTypeAndSubtype	function,	which	returns	values	from	two
enumerations,	CAM.Tool.Types	and	CAM.Tool.Subtypes.	Unrestricted	Getting	Started	with	NX	Open	Chapter	13:	CAM	Page	99	■	Editing	CAM	Objects	For	editing,	CAM	objects	use	the	same	sort	of	“builder”	approach	as	modeling	features	and	other	objects.	So	the	basic	steps	are	to	create	a	“builder”	object,	modify	its	properties,	and	then	“commit”
the	changes.	The	pattern	is	shown	in	the	following	code:	Dim	setup	As	NXOpen.CAM.CAMSetup	=	workPart.CAMSetup	Dim	opCollection	As	NXOpen.CAM.OperationCollection	=	setup.CAMOperationCollection	For	Each	op	As	NXOpen.CAM.Operation	In	opCollection	If	TypeOf(op)	Is	NXOpen.CAM.HoleDrilling	Then	Dim	drillop	As	CAM.HoleDrilling	=
CType(op,	CAM.HoleDrilling)	Dim	builder	As	CAM.HoleDrillingBuilder	=	opCollection.CreateHoleDrillingBuilder(drillop)	builder.CollisionCheck	=	True	builder.Commit	End	If	Next	As	you	can	see,	the	code	turns	on	collision	checking	for	all	hole-drilling	operations.	For	each	operation,	it	creates	a	builder,	sets	its	CollisionCheck	property	to	True,	and
then	commits	the	builder	to	effect	the	change.	To	use	this	approach,	you	have	to	know	where	to	find	the	functions	that	create	builders	for	various	types	of	CAM	objects	(like	the	CreateHoleDrillingBuilder	function	we	used	above).	They	can	be	found	in	two	places.	First,	the	NXOpen.CAM.OperationCollection	class	contains	functions	that	create	builders
for	operations:	Function	Creates	a	builder	for	CreateCavityMillingBuilder	A	planar	milling	cavity	operation	CreateCenterlineDrillTurningBuilder	A	centerline	drill	turning	operation	CreateEngravingBuilder	A	planar	milling	text	operation	CreateFaceMillingBuilder	A	planar	milling	facing	operation	CreateHoleDrillingBuilder	A	hole	drilling	operation
CreatePlanarMillingBuilder	A	planar	milling	planar	operation	Secondly,	the	NXOpen.CAM.NCGroupCollection	class	contains	functions	that	create	builders	for	various	types	of	CAM	“groups”,	which	include	tools,	CAM	geometry,	and	machining	methods:	Function	Creates	a	builder	for	CreateBarrelToolBuilder	A	barrel	tool	CreateDrillGeomBuilder	A
drill	geometry	CreateDrillMethodBuilder	A	drill	method	CreateDrillTapToolBuilder	A	drill	tap	tool	CreateMachineTurretGroupBuilder	A	machine	turret	group	CreateMillToolBuilder	A	mill	tool	CreateMillGeomBuilder	A	mill	geometry	CreateProgramOrderGroupBuilder	A	program	order	group	Here	is	another	example,	this	time	editing	tool	objects:
Unrestricted	Getting	Started	with	NX	Open	Chapter	13:	CAM	Page	100	Dim	setup	As	NXOpen.CAM.CAMSetup	=	workPart.CAMSetup	Dim	groups	As	NXOpen.CAM.NCGroupCollection	=	setup.CAMGroupCollection	For	Each	group	As	NXOpen.CAM.NCGroup	In	groups	If	TypeOf(group)	Is	NXOpen.CAM.Tool	Then	Dim	toolType	As
NXOpen.CAM.Tool.Types	Dim	toolSubType	As	NXOpen.CAM.Tool.Subtypes	tool.GetTypeAndSubtype(toolType,	toolSubType)	If	toolType	=	CAM.Tool.Types.Mill	Dim	builder	As	NXOpen.CAM.MillingToolBuilder	=	groups.CreateMillToolBuilder(tool)	builder.CoolantThrough	=	True	builder.Commit	End	If	End	If	Next	Next	As	you	can	see,	the	code	sets
CoolantThrough	=	True	for	every	milling	tool.	■	CAM	Views	Within	a	given	setup,	the	NCGroup	and	Operation	objects	are	arranged	hierarchically.	There	are	actually	four	independent	tree	structures:	the	Geometry	view,	the	MachineMethod	view,	the	MachineTool	view,	and	the	ProgramOrder	view,	which	correspond	with	the	four	possible	views
shown	in	the	Operation	Navigator	in	interactive	NX:	Any	given	operation	will	appear	in	all	four	of	these	views.	As	the	name	implies,	the	four	views	just	provide	us	with	four	different	ways	of	looking	at	the	same	set	of	operations.	In	NX	Open,	the	four	view	types	are	described	by	the	four	values	of	the	NXOpen.CAM.CAMSetup.View	enumeration.	An
NCGroup	object	has	GetParent	and	GetMembers	functions,	so	we	can	navigate	up	and	down	each	tree.	An	Operation	object	has	a	GetParent	function	that	tells	us	its	parent	in	each	of	the	four	views.	There	is	also	a	GetRoot	function	that	gives	us	the	root	of	each	view	tree.	So,	the	code	to	get	the	root	of	each	view	and	the	first-level	members	is	as
follows:	Dim	setup	As	NXOpen.CAM.CAMSetup	=	workPart.CAMSetup	Dim	Dim	Dim	Dim	geometryRoot	methodRoot	machineRoot	programRoot	As	As	As	As	NXOpen.CAM.NCGroup	NXOpen.CAM.NCGroup	NXOpen.CAM.NCGroup	NXOpen.CAM.NCGroup	Dim	Dim	Dim	Dim	geometryRootMembers	methodRootMembers	machineRootMembers
programRootMembers	As	As	As	As	=	=	=	=	setup.GetRoot(NXOpen.CAM.CAMSetup.View.Geometry)	setup.GetRoot(NXOpen.CAM.CAMSetup.View.MachineMethod)	setup.GetRoot(NXOpen.CAM.CAMSetup.View.MachineTool)	setup.GetRoot(NXOpen.CAM.CAMSetup.View.ProgramOrder)	NXOpen.CAM.CAMObject()	NXOpen.CAM.CAMObject()
NXOpen.CAM.CAMObject()	NXOpen.CAM.CAMObject()	=	geometryRoot.GetMembers	=	methodRoot.GetMembers	=	machineRoot.GetMembers	=	programRoot.GetMembers	When	we	create	a	new	“group”	object	(like	a	tool),	it	must	be	correctly	placed	in	one	of	these	four	views,	by	indicating	which	group	should	be	its	parent.	When	we	create	an
operation	object,	it	must	be	correctly	placed	in	all	four	views,	so	we	need	to	specify	four	parents.	Further	details	can	be	found	in	the	next	section,	which	discusses	creation	of	tools.	Unrestricted	Getting	Started	with	NX	Open	Chapter	13:	CAM	Page	101	■	Creating	a	Tool	The	NX	Open	process	for	creating	a	tool	involves	several	steps.	The	basic	code
begins	with	something	like	the	following:	Dim	setup	As	NXOpen.CAM.CAMSetup	=	workPart.CAMSetup	Dim	groups	As	NXOpen.CAM.NCGroupCollection	=	setup.CAMGroupCollection	Dim	machineRoot	As	NXOpen.CAM.NCGroup	=	setup.GetRoot(NXOpen.CAM.CAMSetup.View.MachineTool)	Dim	camFalse	As
CAM.NCGroupCollection.UseDefaultName	=	CAM.NCGroupCollection.UseDefaultName.False	Dim	toolGroup	As	CAM.NCGroup	toolGroup	=	groupCollection.CreateTool(machineRoot,	"mill_planar",	"BALL_MILL",	camFalse,	"T24")	Dim	myTool	As	CAM.Tool	=	CType(toolGroup,	CAM.Tool)	The	definition	of	camFalse	is	not	important;	it’s	only	purpose	is
to	avoid	writing	a	very	long	line	of	code	later	on.	The	most	important	function	shown	is	CreateTool	which	(not	surprisingly)	creates	a	tool	object.	The	first	parameter	indicates	which	group	should	be	the	parent	of	the	new	tool;	by	specifying	the	machineRoot	group,	we	are	indicating	that	the	new	tool	should	be	placed	at	the	top	level	of	the	MachineTool
view	hierarchy.	The	“mill_planar”	and	“BALL_MILL”	strings	indicate	the	tool	type	and	subtype	respectively.	These	are	the	same	strings	that	appear	in	the	Insert	Tool	dialog	in	interactive	NX.	Some	example	values	for	this	pair	of	strings	are:	Tool	Type	Tool	Subtype	mill_planar	MILL	mill_planar	CHAMFER_MILL	mill_planar	BALL_MILL	mill_planar
SPHERICAL_MILL	mill_planar	T_CUTTER	mill_planar	BARREL	hole_making	COUNTER_SINK	hole_making	COUNTER_BORE	drill	COUNTERSINKING_TOOL	drill	COUNTERBORING_TOOL	Our	next	task	is	to	specify	specific	values	for	various	tool	parameters	like	diameter	and	length.	Since	we	have	not	yet	provided	these	values,	our	tool	is	just	a
generic	“default”	one.	Continuing	from	above,	the	necessary	code	is:	Dim	toolBuilder	As	CAM.MillToolBuilder	=	groupCollection.CreateMillToolBuilder(myTool)	toolBuilder.TlDiameterBuilder.Value	=	4.5	toolBuilder.TlHeightBuilder.Value	=	15	toolBuilder.TlNumFlutesBuilder.Value	=	4	toolBuilder.Description	=	"Example	ball	mill"
toolBuilder.HelicalDiameter.Value	=	80.0	toolBuilder.Commit	toolBuilder.Destroy	The	pattern	should	be	familiar,	by	now:	we	create	a	builder,	modify	its	values,	and	then	commit	and	destroy.	This	is	essentially	the	same	editing	process	that	we	used	in	an	earlier	example.	The	only	difference	here	is	that	we	had	to	create	a	default	tool	before	we	started
the	editing	process.	Unrestricted	Getting	Started	with	NX	Open	Chapter	13:	CAM	Page	102	Chapter	14:	Block-Based	Dialogs	Since	around	2007,	the	NX	user	interface	has	been	based	on	“block-based”	dialogs,	so-called	because	they	are	built	from	a	common	collection	of	user	interface	“blocks”.	So,	for	example,	this	dialog	consists	of	four	blocks,
whose	types	are	indicated	by	the	labels	to	the	right	Each	block	has	a	specific	type	and	purpose.	So,	looking	at	the	four	examples	from	the	dialog	above:					An	Enumeration	block	presents	a	set	of	options	to	the	user,	and	asks	him	to	choose	one	of	them	An	Integer	block	allows	the	user	to	enter	an	integer	(by	typing,	or	by	using	a	slider,	for	example)	An
Action	Button	block	performs	some	action	when	the	user	clicks	on	it	A	String	block	displays	text	that	the	user	can	(sometimes)	edit	Blocks	of	any	given	type	are	used	in	many	different	dialogs	throughout	NX.	Application	developers	build	dialogs	from	blocks,	rather	than	from	lower-level	items.	This	reduces	programming	effort	for	NX	developers,	and
guarantees	consistency.	Constructing	a	new	Enumeration	block	(for	example)	requires	very	little	code,	and	this	new	Enumeration	block	is	guaranteed	to	look	and	behave	in	exactly	the	same	way	as	all	other	Enumeration	blocks	within	NX.	You	can	construct	these	same	“block-based”	dialogs	in	NX	Open,	so	your	add-on	applications	can	look	and	behave
like	the	rest	of	NX.	This	chapter	tells	you	how	to	do	this.	We	will	show	you	how	to	use	Block	UI	Styler	to	design	your	dialog.	After	your	dialog	is	designed,	we	will	show	you	how	to	make	it	function	by	adding	code	to	the	dialog	callbacks.	■	When	to	Use	Block-Based	Dialogs	As	we	saw	earlier,	you	can	use	Windows	Forms	(WinForms)	to	create	dialogs
for	your	NX	Open	applications,	and	Visual	Studio	has	some	very	nice	tools	to	help	you	do	this.	So,	you	may	be	wondering	why	you	should	use	blockbased	dialogs	instead.	WinForm	dialogs	are	very	rich	and	flexible,	so	there	may	be	times	when	they	are	appropriate.	On	the	other	hand,	block-based	dialogs	are	rigid	and	highly	structured,	because	they
enforce	NX	user	interface	standards.	Unless	the	added	flexibility	of	a	WinForm	brings	some	significant	benefit,	it’s	better	to	have	a	block-based	dialog	whose	appearance	and	behavior	are	consistent	with	the	rest	of	NX.	Also,	achieving	NX-like	behavior	in	a	WinForm-based	dialog	sometimes	requires	a	great	deal	of	work.	This	is	especially	true	of
dialogs	that	have	accompanying	graphical	feedback	(like	Selection	and	the	Point,	Vector	and	Plane	Subfunctions).	For	these	kinds	of	situations,	implementation	using	blocks	is	usually	much	easier.	So,	in	short,	we	recommend	using	block-based	dialogs	unless	the	added	flexibility	of	WinForms	provides	some	large	benefit	that	outweighs	the	drawbacks
of	inconsistency	and	increased	development	cost.	Unrestricted	Getting	Started	with	NX	Open	Chapter	14:	Block-Based	Dialogs	Page	103	■	How	Block-Based	Dialogs	Work	The	diagram	below	shows	how	your	code	interacts	with	a	block-based	dialog	First,	your	code	creates	and	displays	the	dialog.	Then,	when	the	user	starts	to	interact	with	the	dialog,
NX	sends	messages	back	to	your	code,	telling	you	what	“events”	occurred	in	the	dialog.	For	example,	NX	might	tell	you	that	the	user	entered	some	number,	or	clicked	on	the	Apply	button.	Your	code	should	have	functions	called	“event	handlers”	or	“callbacks”	that	determine	what	should	happen	(if	anything)	in	response	to	each	event.	The	code
generator	for	Block	UI	Styler	can	create	template	functions	for	these	event	handlers.	The	dialog	constructor	contains	code	to	register	the	event	handlers	for	specific	dialog	events,	so	that	NX	knows	which	event	handler	to	call	for	a	particular	dialog	event;	for	example,	we	might	stipulate	that	NX	should	call	an	event	handler	named	“apply_cb”	when	the
user	clicks	the	Apply	button.	If	you	want	to	create	some	geometry	when	the	user	clicks	the	Apply	button,	you	would	put	the	code	to	create	this	geometry	in	your	apply_cb	function.	In	this	chapter,	we’ll	discuss	how	to	create	block-based	dialogs.	We	will	use	Block	UI	Styler	to	define	blocks	and	arrange	them	on	our	dialog.	We’ll	use	an	“OrthoLines”
example	that	provides	a	simple	dialog	that	lets	the	user	create	“infinite”	lines	in	the	horizontal	or	vertical	directions	in	the	XY-plane.	It	only	has	two	blocks	–	an	“Enumeration”	block	to	let	the	user	choose	either	horizontal	or	vertical,	and	a	“Double”	block	in	which	the	user	enters	the	offset	distance	(the	distance	from	the	line	to	the	origin).	If	you	don’t
want	to	create	this	dialog	yourself,	using	the	instructions	in	this	chapter,	then	you	can	find	a	completed	version	in	[…NX]\UGOPEN\NXOpen\Examples\GS	Guide\OrthoLines.	■	The	Overall	Process	The	overall	process	of	developing	a	BlockDialog	is	as	follows:					You	use	Block	UI	Styler	to	choose	the	blocks	you	want,	and	arrange	them	on	your	dialog
Block	UI	Styler	creates	a	“dlx”	file,	and	also	some	template	code	You	edit	the	template	code	to	define	the	behavior	you	want	At	run-time,	NX	uses	the	dlx	file	plus	your	code	to	control	the	appearance	and	operation	of	the	dialog	The	process	is	illustrated	in	the	following	figure,	and	further	details	are	provided	below.	Unrestricted	Getting	Started	with
NX	Open	Chapter	14:	Block-Based	Dialogs	Page	104	dlx	file	Arrange	blocks	Template	code	Edit	Program	execution	Final	code	Block	Styler	■	Using	Block	UI	Styler	Instructions	for	using	Block	UI	Styler	are	provided	in	the	NX	User	Manual,	but	it	is	largely	self-explanatory.	Choosing	a	block	type	from	the	Block	Catalog	adds	a	new	block	to	your	dialog.
You	can	then	adjust	its	properties	as	desired.	The	process	is	similar	to	the	one	for	designing	WinForms	that	we	saw	in	chapter	3.	In	NX,	access	Block	UI	Styler	via	Start		All	Applications		Block	UI	Styler.	We	could	use	Block	UI	Styler	to	create	the	dialog	from	scratch,	but	let’s	just	open	the	file	OrthoLines.dlx	in	Block	UI	Styler,	instead	—	it	has	the
dialog	definition	already	created	for	you.	You	can	find	it	in	[…NX]\UGOPEN\NXOpenExamples\VB\GS_Guide\OrthoLines.	The	dialog	has	two	blocks	(directionBlock	and	offsetBlock),	which	you	will	see	listed	in	Block	UI	Styler:	If	you	click	on	one	of	the	blocks	shown	above,	its	properties	will	be	shown	in	the	lower	half	of	Block	UI	Styler	window,	and	you
can	edit	them	as	you	wish.	Some	of	the	more	important	properties	are	shown	below:	Block	Property	Value	directionBlock	Block	ID	directionBlock	Label	Choose	direction	PresentationStyle	Radio	Box	Layout	Horizontal	Value	Horizontal	Vertical	Block	Property	Value	offsetBlock	Block	ID	offsetBlock	Label	Enter	offset	distance	PresentationStyle	Spin
Unrestricted	Getting	Started	with	NX	Open	Chapter	14:	Block-Based	Dialogs	Page	105	When	you	have	established	all	the	blocks	and	properties	you	want,	switch	to	the	Code	Generation	tab	in	Block	UI	Styler,	and	define	the	settings	as	shown	below:	Finally,	choose	File		Save,	which	will	generate	a	VB	file,	called	OrthoLines.vb,	and	another	file	called
OrthoLines.dlx.	■	Template	Code	When	you	save	a	dialog	in	Block	UI	Styler,	a	Visual	Basic	file	is	created	containing	template	code.	The	idea	is	that	you	“fill	in	the	blanks”	in	this	template	code	to	define	the	way	you	want	your	dialog	to	behave.	The	contents	of	the	VB	file	will	depend	on	the	options	you	chose	in	Block	UI	Styler.	The	code	shown	below	is
a	bare	minimum.	We	have	removed	all	the	error-checking	and	most	of	the	comments,	in	order	to	focus	clearly	on	the	essential	concepts.	In	real	working	code,	you	should	not	do	this,	of	course.	When	you	look	at	the	code	in	your	favorite	editor,	you	will	see	something	like	this:	Public	Class	OrthoLines	'class	members	Private	Shared	theSession	As
Session	Private	Shared	theUI	As	UI	Private	theDlxFileName	As	String	Private	theDialog	As	NXOpen.BlockStyler.BlockDialog	Private	directionBlock	As	NXOpen.BlockStyler.Enumeration	Private	offsetBlock	As	NXOpen.BlockStyler.DoubleBlock	'	Block	type:	Enumeration	'	Block	type:	DoubleBlock	and	so	on	...	As	you	can	see,	we	are	defining	a	new	class
called	“OrthoLines”	to	represent	instances	of	our	dialog.	Notice	that	there	are	two	lines	that	declare	variables	called	directionBlock	and	offsetBlock	to	hold	the	two	blocks	that	make	up	an	“OrthoLines”	dialog.	Unrestricted	Getting	Started	with	NX	Open	Chapter	14:	Block-Based	Dialogs	Page	106	Then,	further	down,	you	will	see	a	constructor	(we	have
removed	the	Try/Catch	blocks	to	focus	on	the	code):	Public	Sub	New(theDlxFileName	As	String)	theSession	=	Session.GetSession	theUi	=	UI.GetUI	theDlxFileName	=	"OrthoLines.dlx"	theDialog	=	theUI.CreateDialog(theDlxFileName)	theDialog.AddApplyHandler(AddressOf	apply_cb)	theDialog.AddOkHandler(AddressOf	ok_cb)
theDialog.AddUpdateHandler(AddressOf	update_cb)	theDialog.AddInitializeHandler(AddressOf	initialize_cb)	theDialog.AddDialogShownHandler(AddressOf	dialogShown_cb)	End	Sub	Most	of	this	code	is	adding	“event	handler”	callbacks	to	our	dialog,	as	we	requested	when	we	saved	the	dialog	from	Block	UI	Styler.	You	do	not	need	to	edit	this	part	of
the	generated	file.	You	just	need	to	add	your	code	inside	the	handler	functions.	This	is	where	we	can	write	code	that	responds	to	“events”	in	the	dialog.	For	example,	when	the	user	clicks	the	“Apply”	button	in	the	dialog,	the	“apply_cb”	function	will	be	called,	so	any	code	we	place	in	that	function	(see	below)	will	be	executed.	In	this	way,	we	can	make
the	Apply	button	do	something	useful	when	the	user	clicks	it.	Next,	let’s	look	at	the	sections	of	the	OrthoLines.vb	file	containing	the	handler	functions	we	are	supposed	to	edit	so	that	our	dialog	performs	the	tasks	we	want.	Again,	we	have	removed	some	error	checking	code	to	make	the	concepts	clearer.	First,	there	is	the	“Main”	routine:	Public	Shared
Sub	Main()	theOrthoLines	=	New	OrthoLines()	theOrthoLines.Show()	theOrthoLines.Dispose()	End	Sub	The	first	two	lines	are	automatically	generated	code	that	create	a	new	“OrthoLines”	dialog,	and	display	it	using	the	“Show”	function.	You	will	usually	not	need	to	add	any	code	here	unless	you	have	some	special	setup	logic	for	your	dialog	that	you
need	to	execute	before	the	dialog	is	constructed.	The	most	interesting	part	of	a	dialog	implementation	is	the	code	you	put	in	the	event	handler	functions,	since	this	code	determines	how	the	dialog	will	react.	When	working	with	BlockDialog	objects,	we	normally	use	the	term	“callback”	rather	than	“event	handler”,	but	the	meaning	is	the	same.	In	fact,
the	event	handler	functions	used	with	BlockDialog	objects	all	have	the	suffix	“_cb”	for	“Callback”	appended	to	their	names.	■	The	initialize_cb	and	dialogShown_cb	Event	Handlers	Sometimes	you	want	to	initialize	a	block	on	a	dialog	to	some	value	or	set	its	appearance	before	the	dialog	is	shown	to	the	user.	The	initialize_cb	and	dialogShown_cb	event
handlers	allow	you	to	add	code	that	NX	will	execute	before	the	dialog	is	shown.	The	initialize_cb	is	called	first,	after	NX	has	created	the	dialog	based	on	the	dialog’s	dlx	file.	Block	UI	Styler	will	use	this	callback	to	initialize	the	helper	variables	that	reference	the	blocks	on	your	dialog.	NX	will	then	initialize	the	dialog	blocks	to	the	values	stored	in	dialog
memory.	After	that,	NX	will	call	your	dialogShown_cb	function	just	before	showing	the	dialog	to	the	user.	Any	changes	you	make	to	the	dialog	blocks	in	the	dialogShown_cb	function	override	the	previous	settings.	■	The	apply_cb	Event	Handler	When	the	user	interacts	with	our	dialog,	NX	will	take	note	of	what	he	does,	and	send	messages	back	to	our
code.	Specifically,	every	time	the	user	performs	some	action	in	the	dialog,	NX	will	call	the	associated	“event	handler”	function	within	our	code.	For	example,	if	the	user	clicks	the	“Apply”	button,	NX	will	call	our	apply_cb	function	(since	this	is	the	event	handler	that	was	registered	for	an	“Apply”	event).	Whatever	code	we	put	inside	our	apply_cb
function	will	then	get	executed,	so	we	can	respond	to	the	“Apply”	event	in	a	useful	way.	Unrestricted	Getting	Started	with	NX	Open	Chapter	14:	Block-Based	Dialogs	Page	107	So,	let’s	begin	by	making	the	Apply	button	do	something	interesting.	In	the	apply_cb	function,	after	the	comment	that	says	“Enter	your	callback	code	here”,	let’s	add	some	code
that	writes	a	message	to	the	Info	Window:	Guide.InfoWriteLine("You	clicked	the	Apply	button")	Build	and	run	the	project.	When	the	dialog	appears,	click	on	the	Apply	button,	and	this	should	cause	a	message	to	be	displayed	in	the	NX	Info	window.	This	is	not	terribly	exciting,	admittedly,	but	it	shows	that	the	basic	mechanism	is	working	—	when	the

user	clicks	the	Apply	button,	the	code	in	our	apply_cb	function	is	getting	executed.	You	should	try	clicking	the	OK	button,	too.	You	will	see	that	this	also	causes	the	same	message	to	appear	in	the	Info	window.	This	is	because	the	default	implementation	of	the	ok_cb	event	handler	just	calls	the	apply_cb	function	and	then	closes	the	dialog.	So,	our
apply_cb	code	is	getting	executed	when	the	user	clicks	OK,	also.	Of	course,	what	we’d	really	like	to	do	is	create	a	line	when	the	user	clicks	the	Apply	button.	Here’s	a	new	version	of	the	apply_cb	function	that	will	do	exactly	that.	Type	it	in,	or	copy/paste	it,	as	usual,	inside	the	Try	block,	after	the	comment	that	says	“Enter	your	callback	code	here”:	Dim
infinity	As	Double	=	50000	Dim	d	As	Double	=	offsetBlock.Value	If	directionBlock.ValueAsString	=	"Horizontal"	Then	Guide.CreateLine(-infinity,	d,	0,	infinity,	d,	0)	Else	Guide.CreateLine(d,	-infinity,	0,	d,	infinity,	0)	End	If	'	Create	a	horizontal	line	'	Create	a	vertical	line	This	code	shows	the	typical	pattern	of	an	event	handler	—	you	retrieve	information
from	the	dialog	blocks,	and	then	use	this	information	to	do	what	the	user	requested.	As	you	can	see,	we	use	the	ValueAsString	property	of	directionBlock	to	decide	whether	to	create	a	horizontal	or	vertical	line,	and	we	read	the	offset	distance	from	the	offsetBlock.Value	property.	We’re	assuming	that	the	user	has	set	these	values	appropriately	before
clicking	the	Apply	button.	The	value	we’re	using	for	infinity	is	arbitrary,	of	course,	and	you	will	probably	want	to	change	it	to	something	larger	if	you	design	aircraft	or	ships.	If	you	build	and	run	this	code,	you	should	find	that	it	works	nicely.	Entering	some	information	and	clicking	Apply	will	create	a	line,	as	we	expect.	Clicking	OK	will	also	create	a
line,	for	the	reasons	outlined	above.	Happily,	this	is	exactly	what	we	want.	To	make	our	code	a	bit	cleaner,	and	to	prepare	for	the	steps	ahead,	let’s	re-organize	a	little.	For	reasons	that	will	become	clear	later,	we’re	going	to	package	the	code	that	creates	an	infinite	line	into	a	nice	tidy	function.	Copy	the	following	code,	and	place	it	somewhere	inside
the	OrthoLines	class.	Right	at	the	bottom,	just	before	the	End	Class	line	is	a	good	place	for	it.	Private	Function	CreateLine()	As	NXOpen.Line	Dim	infinity	As	Double	=	50000	Dim	d	As	Double	=	offsetBlock.Value	If	directionBlock.ValueAsString	=	"Horizontal"	Then	Return	Guide.CreateLine(-infinity,	d,	0,	infinity,	d,	0)	Else	Return	Guide.CreateLine(d,	-
infinity,	0,	d,	infinity,	0)	End	If	End	Function	'	Horizontal	line	'	Vertical	line	Note	that	we	have	made	the	function	Private,	since	it	wouldn’t	make	sense	to	use	it	outside	the	OrthoLines	class.	Now	that	we	have	this	CreateLine	function,	we	can	make	a	much	simpler	version	of	our	apply_cb	function,	like	this	(the	Try/Catch	block	has	been	removed):	Public
Function	apply_cb()	As	Integer	CreateLine	Return	0	End	Function	Unrestricted	Getting	Started	with	NX	Open	Chapter	14:	Block-Based	Dialogs	Page	108	The	basic	version	of	your	OrthoLines	function	is	now	complete.	Congratulations.	In	the	next	section	we’ll	add	a	little	more	functionality	to	it,	and	learn	how	to	use	the	update_cb	function.	■	The
update_cb	Event	Handler	Suppose	we	want	to	create	two	different	kinds	of	infinite	lines	—	thin	dashed	ones	and	thick	solid	ones.	A	convenient	way	to	do	this	would	be	to	place	two	new	buttons	on	our	dialog,	like	this:	Let’s	suppose	that	we’re	going	to	call	these	new	buttons	thinDashedButton	and	thickSolidButton.	You	can	use	Block	UI	Styler	to	add
two	buttons	to	the	bottom	of	your	dialog.	We	have	done	this	for	you	in	the	example	OrthoLines2	in	[…NX]\UGOPEN\NXOpenExamples\VB\GS_Guide\OrthoLines2.	If	you	open	the	file	OrthoLines2.vb	for	this	example,	you	will	see	two	more	lines	near	the	top	of	the	file,	which	declare	the	variables	for	the	new	buttons,	like	this:	Private	Private	Private
Private	directionBlock	offsetBlock	thinDashedButton	thickSolidButton	As	As	As	As	NXOpen.BlockStyler.Enumeration	NXOpen.BlockStyler.DoubleBlock	NXOpen.BlockStyler.Button	NXOpen.BlockStyler.Button	Next,	the	initialize_cb	function	contains	code	to	initialize	the	variables	for	the	new	buttons,	where	you	will	see	the	following	two	lines:
thinDashedButton	=	CType(theDialog.TopBlock.FindBlock("thinDashedButton"),	NXOpen.BlockStyler.Button)	thickSolidButton	=	CType(theDialog.TopBlock.FindBlock("thickSolidButton"),	NXOpen.BlockStyler.Button)	You	can	build	the	project	and	run	this	code,	and	it	should	produce	the	dialog	shown	above.	But,	of	course,	the	new	buttons	won’t	do
anything	until	we	write	some	event	handler	code	for	them.	The	event	handler	code	for	the	two	new	buttons	should	go	in	the	update_cb	function,	like	this:	Public	Function	update_cb(ByVal	block	As	NXOpen.BlockStyler.UIBlock)	As	Integer	Dim	myLine	As	NXOpen.Line	If	block	Is	thinDashedButton	Then	myLine	=	CreateLine	myLine.LineWidth	=
DisplayableObject.ObjectWidth.Thin	myLine.LineFont	=	DisplayableObject.ObjectFont.Dashed	myLine.RedisplayObject	End	If	If	block	Is	thickSolidButton	Then	myLine	=	CreateLine	myLine.LineWidth	=	DisplayableObject.ObjectWidth.Thick	myLine.LineFont	=	DisplayableObject.ObjectWidth.Solid	myLine.RedisplayObject	End	If	Return	0	End
Function	You	can	see	now	why	we	wrote	the	CreateLine	function	—	because	we	need	to	call	it	in	two	places	in	this	code.	We	are	creating	the	lines	when	we	click	on	either	of	the	new	buttons,	so	you	can	remove	the	code	in	apply_cb	that	we	Unrestricted	Getting	Started	with	NX	Open	Chapter	14:	Block-Based	Dialogs	Page	109	used	in	the	previous
section	to	create	the	lines.	The	dialog	should	just	close	when	we	click	on	OK.	Clicking	on	Apply	will	execute	the	code	in	the	apply_cb	without	closing	the	dialog.	You	could	modify	the	dialog	so	that	it	only	has	a	Close	button,	but	for	now	we	will	just	leave	the	OK	and	Apply	buttons	on	the	dialog.	NX	calls	our	update_cb	function	whenever	the	user	does
anything	with	any	block	on	the	dialog.	As	you	can	see,	the	update_cb	function	receives	a	UI	block	called	block	as	input,	which	tells	us	which	block	the	user	“touched”.	We	write	a	series	of	“If”	clauses	that	test	the	value	of	block,	and	do	different	things	in	different	cases.	If	we	find	that	block	has	the	value	thinDashedButton,	for	example,	then	we	know
that	the	user	clicked	the	thinDashedButton	button,	so	we	create	a	line	that’s	thin	and	dashed.	Of	course,	it’s	possible	that	the	user	changed	the	line	direction	or	the	offset	distance	(rather	than	clicking	one	of	our	two	buttons).	We	could	put	some	more	code	in	the	update_cb	function	to	handle	these	events,	too,	if	we	wanted.	But	let’s	quit	here.	Build
and	run	the	project,	and	have	some	fun	making	infinite	lines.	■	Callback	Details	We’ve	discussed	the	update_cb	event	handler	and	the	apply_cb	event	handler	quite	a	bit	in	the	last	few	sections.	But	some	additional	event	handlers	(callbacks)	are	available,	too.	The	complete	list	of	available	callbacks	is	shown	in	the	Code	Generation	tab	of	Block	UI
Styler,	and	there	you	can	choose	the	ones	for	which	you	want	“stub”	code	generated.	The	table	below	indicates	when	NX	calls	each	of	these:	Callback	function	name	When	NX	calls	this	function	filter_cb	When	the	user	selects	an	object.	It	is	only	used	for	selection	blocks.	update_cb	When	the	user	changes	something	in	the	dialog	ok_cb	When	the	user
clicks	the	OK	button	apply_cb	When	the	user	clicks	the	Apply	button	cancel_cb	When	the	user	clicks	the	Cancel	button	initialize_cb	Just	before	values	are	loaded	from	“dialog	memory”	(see	below)	dialogShown_cb	Just	before	the	dialog	is	displayed	(see	below)	focusNotify_cb	When	focus	is	shifted	to	a	block	that	cannot	receive	keyboard	entry
keyboardFocusNotify_cb	When	focus	is	shifted	to	a	block	that	can	receive	keyboard	entry	The	OK,	Apply	and	Cancel	callbacks	should	each	return	an	integer	value.	In	the	Cancel	callback,	this	returned	value	is	ignored,	so	its	value	doesn’t	matter.	In	the	OK	and	Apply	callbacks,	returning	zero	will	cause	the	dialog	to	be	closed,	and	a	positive	value	will
cause	it	to	remain	open.	■	Precedence	of	Values	In	many	situations,	the	values	the	user	enters	into	a	dialog	are	stored	internally	within	NX,	so	that	they	can	be	reloaded	and	used	as	default	values	the	next	time	the	dialog	is	displayed.	You	may	have	noticed	this	happening	in	the	example	above.	This	facility	is	called	“dialog	memory”.	If	your	code	is
trying	to	control	the	contents	of	a	dialog,	it	is	important	to	understand	how	this	reloading	from	dialog	memory	fits	into	the	overall	process.	The	chain	of	events	is	as	follows:	(1)	Values	and	options	from	the	corresponding	dlx	file	are	used,	then	…	(2)	Values	and	options	specified	in	the	initialize_cb	function	are	applied,	and	then	…	(3)	Values	from	dialog
memory	are	applied,	and	then	…	(4)	Values	and	options	specified	in	the	dialogShown_cb	function	are	applied,	and	then	finally	…	(5)	The	dialog	is	displayed	So,	you	can	see	that	values	and	options	you	set	in	the	initialize_cb	function	might	get	overwritten	by	values	from	dialog	memory.	Since	the	dialogShown_cb	function	is	executed	later,	it	does	not
suffer	from	this	drawback.	On	the	other	hand,	the	initialize_cb	function	can	set	values	that	the	dialogShown_cb	function	cannot.	So,	in	short,	the	initialize_cb	function	gives	you	broader	powers,	but	the	dialogShown_cb	function	gives	you	stronger	ones.	Unrestricted	Getting	Started	with	NX	Open	Chapter	14:	Block-Based	Dialogs	Page	110	■	Getting
More	Information	This	is	a	very	simple	example,	of	course.	In	more	realistic	cases,	there	will	likely	be	much	more	code,	but	the	basic	structure	will	remain	the	same.	The	standard	NX	documentation	set	includes	a	manual	describing	the	details	of	Block	UI	Styler.	Also,	the	NXOpen	samples	folder	contains	eight	examples	of	Block	UI	Styler	dialogs.	Its
location	is	typically	[…NX]\UGOPEN\SampleNXOpenApplications\.NET\BlockStyler.	The	dialog	elements	used	in	Block	UI	Styler	dialogs	are	documented	in	the	NXOpen.BlockStyler	namespace	section	of	the	NX	Open	.NET	API	Reference	Manual.	Unrestricted	Getting	Started	with	NX	Open	Chapter	14:	Block-Based	Dialogs	Page	111	Chapter	15:
Selecting	NX	Objects	In	order	to	perform	some	operation	on	an	NX	object,	the	user	will	often	have	to	select	it,	first.	So,	we	need	some	way	to	support	selection	in	our	NX	Open	programs.	You	can	use	either	a	free-standing	Selection	object	or	a	SelectObject	block	on	a	block-based	dialog.	The	two	approaches	have	much	in	common,	and	this	chapter
describes	both	of	them.	■	Selection	Dialogs	One	way	to	support	selection	in	NX	Open	is	to	use	the	tools	in	the	NXOpen.Selection	class.	The	general	process	is:					You	get	the	Selection	object	from	the	NXOpen.UI	You	define	some	variables	for	the	selection	parameters,	if	necessary	You	call	one	of	the	selection	methods	on	it,	so	that	it	can	gather
information	from	the	user	A	Selection.Response	is	returned	to	you,	as	well	as	the	selected	objects	if	the	user	did	not	cancel	the	selection	Here	is	a	short	snippet	of	code	illustrating	this	process.	Note	that	we	wrote	Imports	NXOpen.Selection	at	the	top	to	make	the	code	simpler:	Imports	NXOpen.Selection	…	Dim	Dim	Dim	Dim	Dim	Dim	Dim	Dim	Dim
Dim	theUI	=	UI.GetUI	selManager	=	theUI.SelectionManager	obj	As	TaggedObject	cursor	As	Point3d	cue	=	"Please	select	a	curve	to	be	hidden"	title	=	"Selection	Demo"	scope	=	SelectionScope.AnyInAssembly	action	=	SelectionAction.ClearAndEnableSpecific	highlight	=	False	types	As	SelectionType()	=	{	SelectionType.Curves	}	Dim	response	=
selManager.SelectTaggedObject(cue,	title,	scope,	highlight,	types,	obj,	cursor)	If	response	Response.Cancel	And	response	Response.Back	Then	Dim	dispObj	=	CType(obj,	DisplayableObject)	dispObj.Blank	End	If	When	the	code	shown	above	is	executed,	a	small	dialog	appears	giving	the	user	the	opportunity	to	select	a	curve.	If	the	user	selects	a	curve
and	clicks	OK,	the	selected	curve	will	be	returned	to	your	code	in	the	selectedObject	variable,	so	you	can	do	whatever	you	want	with	it.	In	the	example	above,	we	chose	to	make	the	curve	hidden	(blanked).	Unrestricted	Getting	Started	with	NX	Open	Chapter	15:	Selecting	NX	Objects	Page	112	Following	are	some	details	of	the	variables	that	affect	the
behavior	of	the	dialog:	Argument	Type	Meaning	cue	String	The	message	displayed	in	the	Cue	line	title	String	The	title	displayed	at	the	top	of	the	dialog	scope	NXOpen.Selection.SelectionScope	The	scope	of	the	selection,	explained	below	keepHighlighted	Boolean	Leave	this	option	set	to	False.	Setting	it	to	True	should	only	be	done	by	advanced	users.
typeArray	NXOpen.Selection.SelectionType[]	Select	objects	from	a	set	of	generic	types:	curves,	faces,	edges,	features,	etc.	response	NXOpen.Selection.Result	Response	returned	from	the	selection	process	selectedObject	NXOpen.TaggedObject	The	objects	the	user	selected	cursor	NXOpen.Point3d	Returns	the	pick	point	from	the	selection	process	The
cue	and	title	variables	are	self-explanatory,	so	we	won’t	discuss	them	further.	The	scope	argument	indicates	the	domain	from	which	the	user	will	be	allowed	to	select	objects.	In	this	case,	we	have	specified	that	the	selection	scope	should	be	the	work	part.	The	scope	options	correspond	exactly	to	the	choices	shown	by	the	Selection	Scope	menu	on	the
Selection	toolbar	in	interactive	NX.	The	typeArray	argument	determines	what	type	of	object	the	dialog	will	allow	the	user	to	select.	The	NX	Selection	Filter	will	be	pre-set	according	to	the	value	of	the	type	argument,	and	this	restricts	the	user	to	choosing	only	certain	types	of	objects.	There	are	several	other	ways	of	specifying	the	types	of	entities	that
will	be	eligible	for	selection.	Details	are	given	below.	The	response	object	returned	by	the	function	indicates	how	the	user	interacted	with	and	closed	the	dialog	(whether	he	clicked	OK	or	Cancel,	for	example).	The	function	also	returns	the	selection	results	through	two	output	arguments:	the	selectedObject	argument	indicates	which	object	was
selected,	and	the	cursor	argument	returns	the	pick	point	of	the	selection.	You	can	think	of	selection	as	a	process	of	shooting	an	infinite	line	(the	cursor	ray)	at	your	model.	The	object	that	gets	selected	is	one	that	this	ray	hits,	or	the	one	that’s	closest	to	the	ray.	The	pick	point	is	the	intersection	of	the	cursor	ray	with	your	model.	The	example	code
shows	the	typical	process	—	you	normally	check	the	value	of	the	response	and	then	do	something	to	the	selected	object	based	on	this	value.	Mask	Triples	If	you	need	more	control	over	the	types	of	objects	that	you	want	to	select,	you	can	use	the	other	SelectTaggedObject	overloaded	methods	on	the	Selection	object.	These	methods	use	mask	triples	to
specific	the	type	of	object	to	be	selected.	Mask	triples	are	a	set	of	three	integers	in	a	structure	called	MaskTriple.	The	parts	of	this	structure	are	integers	called	Type,	Subtype,	and	SolidBodySubtype.	The	class	NXOpen.UF.UFConstants	contains	labeled	integer	constants	used	in	NX	Open	and	some	of	these	constants	are	the	parts	of	the	mask	triple.
Usually,	you	set	the	Type	to	select	a	particular	type	of	object,	and	Subtype	to	select	those	object	of	that	Type	that	have	a	particular	property.	The	Type	and	Subtype	in	the	mask	triple	usually	correspond	with	the	type	and	subtype	of	the	object.	The	SolidBodySubtype	is	usually	0	except	for	solid	geometry	types	and	some	other	special	object	types	where
it	represents	another	detail	subtype.	The	following	table	lists	the	mask	triples	for	some	commonly	used	objects.	The	Type	and	Subtype	are	the	named	constants	from	the	NXOpen.UF.UFConstants	class.	These	constants	are	actually	defined	in	the	files	uf_object_types.h	and	uf_ui_types.h,	which	you	can	find	in	[…NX]\UGOPEN.	In	some	cases,	the
constants	might	be	easier	to	find	in	these	two	files,	rather	than	in	the	UFConstants	documentation.	Unrestricted	Getting	Started	with	NX	Open	Chapter	15:	Selecting	NX	Objects	Page	113	Object	Type	Subtype	Point	UF_point_type	0	Line	UF_line_type	0	Circles	and	Arcs	UF_circle_type	0	Conic	-	Ellipse	UF_conic_type	UF_conic_ellipse_subtype	Conic	-
Parabola	UF_conic_type	UF_conic_parabola_subtype	Datum	Axis	UF_datum_axis_type	0	Datum	Plane	UF_datum_plane_type	0	Spline	UF_spline_type	0	Horizontal	Dimension	UF_dimension_type	UF_dim_horizontal_subtype	Vertical	Dimension	UF_dimension_type	UF_dim_vertical_subtype	Parallel	Dimension	UF_dimension_type	UF_dim_parallel_subtype
Drafting	Note	UF_drafting_entity_type	UF_draft_note_subtype	Drafting	Centerline	UF_drafting_entity_type	UF_draft_cntrline_subtype	If	you	wish	to	select	all	objects	of	a	particular	type,	you	can	use	the	special	value	UF_all_subtype	for	the	Subtype	of	the	mask	triple.	Mask	triples	for	elements	of	solid	or	sheet	bodies	(bodies,	faces,	and	edges)	use	a
type	of	UF_solid_type,	a	subtype	of	0,	and	use	the	SolidBodyType	to	specify	the	type	of	the	geometry.	The	following	table	lists	some	of	the	SolidBodySubtype	values	for	different	types	of	geometry	on	solid	or	sheet	bodies.	Object	SolidBodySubtype	Solid	Body	UF_UI_SEL_FEATURE_BODY	Sheet	Body	UF_UI_SEL_FEATURE_SHEET_BODY	Any	Edge
UF_UI_SEL_FEATURE_ANY_EDGE	Linear	Edge	UF_UI_SEL_FEATURE_LINEAR_EDGE	Circular	Edge	UF_UI_SEL_FEATURE_CIRCULAR_EDGE	Any	Curve	or	Edge	UF_UI_SEL_FEATURE_ANY_WIRE_OR_EDGE	Any	Face	UF_UI_SEL_FEATURE_ANY_FACE	Planar	Face	UF_UI_SEL_FEATURE_PLANAR_FACE	Cylindrical	Face
UF_UI_SEL_FEATURE_CYLINDRICAL_FACE	You	can	look	at	the	NXOpen.UF.UFConstants	class	for	a	more	complete	set	of	values.	The	values	associated	with	UF_solid_type	objects	all	use	the	prefix	UF_UI_SEL_FEATURE,	so	they	are	not	too	difficult	to	find.	Again,	if	you	prefer,	you	can	find	the	same	values	in	the	file	uf_ui_types.h	in	[…NX]\UGOPEN.
You	use	different	methods	from	the	NXOpen.Selection	class	to	select	objects	using	mask	triples.	The	following	code	snippet	selects	lines	using	a	mask	triple.	Unrestricted	Getting	Started	with	NX	Open	Chapter	15:	Selecting	NX	Objects	Page	114	Dim	theUI	=	UI.GetUI	Dim	selMgr	=	theUI.SelectionManager	Dim	selectedObject	As	TaggedObject	Dim
cursor	As	Point3d	Dim	cue	=	"Please	select	a	line	to	be	hidden"	Dim	title	=	"Select	Lines"	Dim	scope	=	Selection.SelectionScope.AnyInAssembly	Dim	action	=	Selection.SelectionAction.ClearAndEnableSpecific	Dim	includeFeatures	=	False	Dim	keepHighlighted	=	False	Dim	lineMask	=	New
Selection.MaskTriple(NXOpen.UF.UFConstants.UF_line_type,	0,	0)	Dim	maskArray	As	Selection.MaskTriple()	=	{	lineMask	}	Dim	response	=	selMgr.SelectTaggedObject(cue,	title,	scope,	action,	includeFeatures,	keepHighlighted,	maskArray,	selectedObject,	cursor)	If	response	NXOpen.Selection.Response.Cancel	And	response
NXOpen.Selection.Response.Back	Then	Dim	dispObj	=	CType(selectedObject,	DisplayableObject)	dispObj.Blank	End	If	The	primary	reason	to	use	mask	triples	over	the	simpler	SelectionType	is	to	allow	finer	granularity	over	the	types	of	objects	you	are	selecting.	This	is	illustrated	in	the	following	example,	where	we	want	to	allow	the	user	to	select
either	a	circular	edge	or	a	cylindrical	face	(because	either	of	these	could	represent	a	hole	in	a	part,	perhaps):	'MaskTriple	for	circular	edges	Dim	type1	=	NXOpen.UF.UFConstants.UF_solid_type	Dim	subtype1	=	0	Dim	solidtype1	=	NXOpen.UF.UFConstants.UF_UI_SEL_FEATURE_CIRCULAR_EDGE	Dim	edgeMaskTriple	=	New	MaskTriple(type1,
subtype1,	solidtype1)	'MaskTriple	for	cylindrical	faces	Dim	type2	=	NXOpen.UF.UFConstants.UF_solid_type	Dim	subtype2	=	0	Dim	solidtype2	=	NXOpen.UF.UFConstants.UF_UI_SEL_FEATURE_CYLINDRICAL_FACE	Dim	faceMaskTriple	=	New	MaskTriple(type2,	subtype2,	solidtype2)	'To	select	either	circular	edge	or	a	cylindrical	face	Dim	maskArray
As	Selection.MaskTriple()	=	{	edgeMaskTriple,	faceMaskTriple	}	Selecting	a	Feature	The	method	SelectFeatures	will	display	a	selection	dialog	with	a	list	of	the	features	in	the	work	part.	You	can	select	a	feature	from	among	the	feature	names	in	the	list,	the	feature	geometry	in	the	graphics	region,	or	the	feature	node	in	the	Part	Navigator.	This	code
snippet	shows	how	to	use	the	method	and	the	following	picture	shows	an	example	of	the	feature	list	dialog.	Dim	Dim	Dim	Dim	selMgr	=	UI.GetUI.SelectionManager	cue	=	"Please	select	a	feature	to	get	info"	featType	=	SelectionFeatureType.Browsable	featArray()	As	Features.Feature	Dim	resp	=	selMgr.SelectFeatures(cue,	featType,	featArray)	If	resp
Response.Cancel	And	resp	Response.Back	Then	For	Each	feat	As	Features.Feature	In	featArray	Guide.InfoWriteLine("Feature	Name:	"	&	feat.GetFeatureName)	Next	feat	End	If	Unrestricted	Getting	Started	with	NX	Open	Chapter	15:	Selecting	NX	Objects	Page	115	Specifying	a	Screen	Position	The	method	SelectScreenPosition	allows	you	to	prompt
the	user	to	pick	a	location	on	the	graphics	display.	The	coordinates	of	the	point	are	given	by	the	intersection	of	the	cursor	ray	of	the	selection	with	the	X-Y	plane	of	the	WCS.	The	following	snippet	prints	the	coordinates	of	the	selected	screen	location	and	the	view	name	to	the	listing	window.	Dim	Dim	Dim	Dim	selManager	=	UI.GetUI.SelectionManager
cue	=	"Please	select	screen	position"	theView	As	View	pt	As	Point3d	Dim	resp	=	selManager.SelectScreenPosition(cue,	theView,	pt)	If	resp	=	DialogResponse.Pick	Then	Guide.InfoWriteLine(String.Format("Point	location:	({0:F3},	{1:F3},	{2:F3})",	pt.X,	pt.Y,	pt.Z))	Guide.InfoWriteLine("View	name:	"	&	theView.Name)	End	If	Multiple	Selection	So	far,
the	NXOpen.Selection	methods	we	have	been	discussing	only	let	you	select	one	object	at	a	time.	There	are	a	set	of	methods	similar	to	the	ones	covered	above	that	allow	you	to	select	one	or	more	objects	in	a	single	selection	operation.	All	the	methods	allow	you	to	specify	the	cue,	title,	and	selection	scope	for	the	selection	and	they	all	return	the
selected	object	or	objects.	The	following	table	summarizes	the	different	selection	methods	we	have	been	talking	about	that	only	select	a	single	object	during	the	selection.	Single	SelectionMethod	Filter	Selection	Argument	Description	SelectTaggedObject	No	filtering	argument	Selects	any	type	of	tagged	object.	SelectTaggedObject
Selection.TypeFilter	array	Selects	an	object	based	on	TypeFilter	categories	SelectTaggedObject	Selection.SelectionAction,	Selection.MaskTriple	array	Selects	an	object	based	on	specific	types	specific	in	the	MaskTriple	array.	The	SelectionAction	argument	defines	how	to	apply	the	filters	from	the	mask	triple	array	to	the	existing	global	selection	filters
in	the	application.	SelectScreenPosition	Selection.SelectionAction,	Selection.MaskTriple	array	filtering	argument	Returns	the	screen	position	selection	defined	as	the	intersection	of	the	cursor	ray	with	the	X-Y	plane	of	the	WCS.	Unrestricted	Getting	Started	with	NX	Open	Chapter	15:	Selecting	NX	Objects	Page	116	The	following	table	summarizes	the
equivalent	methods	that	allow	selecting	multiple	objects	in	a	single	selection:	Multiple	SelectionMethod	Filter	Selection	Argument	Description	SelectTaggedObjects	No	filtering	argument	Selects	one	or	more	tagged	objects	of	any	type.	SelectTaggedObjects	Selection.TypeFilter	array	Selects	one	or	more	objects	based	on	TypeFilter	categories.
SelectTaggedObjects	Selection.SelectionAction,	Selection.MaskTriple	array	Selecting	one	or	more	objects	based	on	types	specified	in	the	MaskTriple	array.	The	SelectionAction	argument	defines	how	to	apply	the	filters	from	the	mask	triple	array	to	the	existing	global	selection	filters	in	the	application.	SelectFeatures	SelectionFeatureType	Selects	one
or	more	features	from	the	features	on	the	work	part.	Using	these	SelectTaggedObjects	methods	will	cause	the	standard	NX	multi-selection	dialog	to	appear	This	dialog	allows	the	user	to	select	objects	in	all	the	usual	ways.	As	with	single	selection,	the	available	options	in	the	selection	filter	will	be	pre-set	to	restrict	the	range	of	different	object	types
that	are	selectable.	The	selection	result	is	returned	in	a	TaggedObject	array	that	holds	all	the	selected	objects.	Typically,	your	code	will	cycle	through	this	array,	doing	something	to	each	object	in	turn.	For	example:	Selection	=	UI.GetUI.SelectionManager	Dim	response	=	Selection.SelectTaggedObjects(cue,	title,	scope,	action,	includeFeatures,
keepHighlighted,	maskArray,	objects)	If	response	NXOpen.Selection.Response.Cancel	Then	For	Each	obj	In	objects	Dim	dispObj	=	CType(obj,	DisplayableObject)	dispObj.Blank	Next	End	If	You	can	use	standard	.NET	functions	on	the	array	of	selected	objects.	For	example,	objects.Length	gives	you	the	number	of	objects	selected,	and
objects.ConvertAll	lets	you	convert	it	to	some	other	type.	■	SelectObject	Blocks	Sometimes,	you	will	want	to	support	selection	inside	a	larger	block-based	dialog,	rather	than	using	a	standalone	selection	dialog.	To	do	this,	you	place	a	SelectObject	block	on	your	dialog.	As	we	know	from	the	previous	chapter,	you	use	Block	UI	Styler	to	create	block-
based	dialogs	in	NX	Open.	We’ll	be	creating	a	simple	Block	Dialog	containing	a	Select	Object	block	in	the	example	below.	The	basic	steps	are	as	follows:							You	open	Block	UI	Styler	You	add	a	SelectObject	block	to	your	dialog	You	adjust	the	block’s	characteristics	and	behavior,	if	necessary	You	adjust	the	code	generation	settings	for	the	dialog	You
save	your	dialog	to	a	VB	file	and	a	dlx	file	You	edit	the	callbacks	in	the	generated	VB	file	to	add	the	behavior	for	your	dialog.	Unrestricted	Getting	Started	with	NX	Open	Chapter	15:	Selecting	NX	Objects	Page	117	Here	are	some	snippets	of	the	dialog	callbacks	illustrating	the	use	of	SelectObject	block	on	a	Block	Styler	dialog.	We	have	omitted	the
class	declaration	and	the	New	method	since	you	should	not	have	to	change	the	code	generated	from	Block	Styler.	Public	Sub	initialize_cb()	selectBlock	=	CType(theDialog.TopBlock.FindBlock("selectionBlock"),	NXOpen.BlockStyler.SelectObject)	selectBlock.AddFilter(NXOpen.BlockStyler.SelectObject.FilterTypes.CurvesAndEdges)
selectBlock.MaximumScopeAsString	=	"Entire	Assembly"	End	Sub	The	MaximumScope	property	has	type	“Enum”	when	shown	in	Block	Styler,	but,	as	you	can	see,	the	code	above	sets	its	value	using	a	string.	The	only	legal	values	of	the	string	are	“Within	Work	Part	Only”,	“Within	Work	Part	and	Components”,	or	“Entire	Assembly”.	These	strings	are
case	sensitive,	and	spaces	do	count.	You	can	find	the	legal	string	values	by	looking	at	the	property	in	Block	Styler,	or	by	calling	the	function	GetMaximumScopeMembers.	Using	string	values	to	work	with	Block	Styler	“Enum”	properties	is	a	fairly	common	practice	—	the	SelectMode	and	StepStatus	properties	use	the	same	technique,	for	example.
Public	Function	apply_cb()	Dim	selectedObjects	As	TaggedObject()	=	selectBlock.GetSelectedObjects	Dim	selObj	=	CType(selectedObjects(0),	DisplayableObject)	selObj.Blank	Return	0	End	Function	When	this	code	is	executed,	a	small	dialog	appears,	giving	the	user	the	opportunity	to	select	a	curve	or	edge:	If	the	user	selects	a	curve	and	clicks	OK,
the	curve	will	be	hidden	(blanked).	With	the	filter	set	to	FilterTypes.CurvesAndEdges,	the	user	can	select	edges,	too.	However,	an	edge	can	never	be	hidden	—	its	visibility	is	always	determined	by	the	visibility	of	its	owning	body.	Just	as	we	saw	with	the	Selection.Dialog	earlier,	there	is	a	SetFilter	function	that	determines	what	type	of	object	the	block
will	allow	the	user	to	select.	Several	properties	of	the	SelectObject	block	let	you	control	what	type	of	objects	to	select.	The	following	table	lists	some	of	the	SelectObject	block	properties	that	control	selection.	More	details	are	in	the	Block	Styler	Reference	Guide.	As	we	saw	above,	you	often	use	string	variables	to	work	with	properties	that	Unrestricted
Getting	Started	with	NX	Open	Chapter	15:	Selecting	NX	Objects	Page	118	have	type	“Enum”	in	Block	Styler.	Properties	that	use	this	approach	are	listed	as	Type	“String	(Enum)”	in	the	table	below:	Property	Type	Meaning	Cue	String	The	message	displayed	in	the	Cue	line	LabelString	String	The	prompt	string	for	the	Select	Object	block
MaximumScopeAsString	String	(Enum)	Specifies	the	maximum	scope	available	in	Selection	Scope	on	the	Selection	Bar.	Legal	string	values	are:		“Within	Work	Part	Only”		“Within	Work	Part	and	Components”		“Entire	Assembly”	InterpartSelectionAsString	String	(Enum)	Specifies	if	interpart	links	are	automatically	created	when	selecting	geometry
from	a	component.	Legal	strings	are:		“Simple”		“Non-associative	Interpart	Copy	Only”		“Associative	and	Non-associative	Interpart	Copy”		“Associative	Interpart	Copy”	PickPoint	Point3d	Pick	point	of	the	selection	PointOverlay	Boolean	If	True,	adds	a	button	to	access	the	Point	Constructor	dialog	SelectModeAsString	String	(Enum)	“Single”	for	single
selection,	“Multiple”	for	multiple	selection	StepStatusAsString	String	(Enum)	Defines	this	selection	step	to	be	either	“Required”	or	“Optional”.	If	set	to	“Required”,	the	user	must	select	an	object	in	this	block	before	the	OK	or	Apply	buttons	become	active.	The	step	status	is	set	to	“Satisfied”	once	the	user	completes	a	selection.	Several	methods	allow
you	to	filter	the	type	of	objects	to	select,	and	to	get	the	objects	selected	by	the	user.	Method	Arguments/Return	Type	Meaning	AddFilter	SelectObject.FilterType	Specify	a	general	type	of	object	to	be	selected.	Possible	types	are	Components,	CurvesAndEdges,	Edges,	Faces,	Features,	SheetBodies,	and	SolidBodies.	AddFilter	Type,	Subtype,
SolidBodySubtype	Specify	one	object	type	from	the	elements	of	a	mask	triple.	GetSelectedObjects	TaggedObject	array	Returns	the	objects	selected	by	the	user.	SetSelectionFilter	Selection.SelectionAction,	Selection.MaskTriple	array	Specify	the	selection	action	and	the	desired	types	of	objects	to	be	selected.	You	can	use	the	AddFilter	methods	if	you
just	need	to	select	objects	from	one	of	the	broad	categories	listed	above	or	from	one	mask	triple	type.	If	you	need	to	select	objects	from	several	distinct	types,	or	need	more	control	of	the	type	of	object	to	be	selected,	use	the	SetSelectionFilter	method.	After	the	user	has	selected	some	objects,	you	can	retrieve	the	selected	objects	using	the
GetSelectedObjects	method	and	process	them	however	you	wish.	■	Selecting	Faces,	Curves	and	Edges	using	Collectors	Most	NX	features	use	selection	intent	rules	when	selecting	faces,	curves	or	edges	as	input	geometry	for	features.	For	example,	you	often	will	select	edges	for	a	blend	by	picking	a	given	edge	while	using	a	selection	intent	rule	to	get
all	edges	tangent	to	the	selected	edge.	You	can	implement	selection	intent	rules	in	your	block-based	dialogs	by	using	special	collector	blocks	to	handle	face	or	curve	and	edge	selection.	The	CurveCollector	block	lets	you	specify	a	set	of	selection	intent	rules	for	selecting	either	edges	or	wireframe	curves.	The	FaceCollector	block	lets	you	specify	a	set	of
selection	intent	rules	for	selecting	faces.	CurveCollector	Block	The	CurveCollector	block	has	some	integer	properties	where	the	bits	of	the	integer	represent	options	that	you	can	turn	on	or	off	by	setting	that	particular	bit	to	0	or	1.	The	integer	property	CurveRules	specifies	which	curve	Unrestricted	Getting	Started	with	NX	Open	Chapter	15:	Selecting
NX	Objects	Page	119	selection	intent	rules	should	be	available	for	your	block.	Curve	rules	that	are	set	to	1	will	be	added	to	the	Curve	Rule	drop	down	menu	on	the	Selection	Bar.	When	your	CurveCollector	block	is	active,	the	user	may	select	one	of	these	curve	selection	rules	to	use	for	selecting	curves.	The	integer	property	EntityTypes	specifies	which
entity	types	should	be	selectable	by	your	block.	Block	UI	Styler	creates	helper	variables	in	the	code	generated	for	your	dialog	to	make	it	easier	to	set	these	integer	properties.	The	following	tables	list	some	commonly	used	helper	variables	that	Block	UI	Styler	creates	for	these	properties.	A	list	of	curve	rules	with	detailed	information	is	contained	in
“Selection	Intent	rules	and	options	on	the	Top	Border	bar”	in	the	Fundamentals	chapter	of	the	NX	documentation.	Curve	Rule	Bit	Value	Meaning	Body	Edges	CurveRules_BodyEdges	Picking	any	edge	from	a	body	will	select	all	the	edges	of	that	body.	Connected	Curves	CurveRules_ConnectedCurves	Picking	a	curve	will	select	a	chain	of	end-to-end
connected	curves	that	share	end	points.	Face	Edges	CurveRules_FaceEdges	Picking	a	face	will	select	all	the	edges	of	that	face,	including	interior	edges	for	holes	in	the	face	Feature	Curves	CurveRules_FeatureCurves	Picking	an	edge	or	curve	will	select	all	the	edges	or	curves	of	the	feature	that	owns	the	selected	one.	Single	Curve	(Required)
CurveRules_SingleCurve	Supports	single	selection	of	curves	or	edges.	This	rule	is	required	to	be	on	for	the	CurveCollector	block.	Tangent	Curves	CurveRules_TangentEdges	Picking	an	edge	or	curve	will	select	all	the	edges	or	curves	tangent	to	the	selected	one.	Entity	Type	Helper	Variable	Meaning	Curves	EntityType_AllowCurves	Filters	selection	to
curves	Edges	EntityType_AllowEdges	Filters	selection	to	edges	Points	EntityType_AllowPoint	Filters	selection	to	existing	points	Bodies(Not	Used)	EntityType_AllowBodies	Note:	this	option	is	generated	by	Block	UI	Styler	but	bodies	cannot	be	directly	selected	by	the	CurveCollector.	For	example,	if	you	want	to	select	either	curves	or	edges,	and	use	the
Single	Curve,	Tangent	Edges,	or	Vertex	Edges	rules,	you	would	use	the	following	code	in	your	initialize	callback:	Public	Sub	initialize_cb()	Dim	edgeSelect	=	CType(theDialog.TopBlock.FindBlock("edgeSelectBlock"),	NXOpen.BlockStyler.CurveCollector)	edgeSelect.EntityTypes	=	EntityType_AllowCurves	Or	EntityType_AllowEdges
edgeSelect.CurveRules	=	CurveRules_SingleCurve	Or	CurveRules_TangentEdges	Or	CurveRules_VertexEdges	End	Sub	FaceCollector	Block	The	FaceCollector	block	has	some	integer	properties	where	the	bits	of	the	integer	represent	options	that	you	can	turn	on	or	off	by	setting	the	particular	bit	to	0	or	1.	The	integer	property	FaceRules	specifies
which	face	selection	intent	rules	should	be	available	for	your	block.	The	integer	property	EntityTypes	specifies	which	entity	types	should	be	selectable	by	your	block.	Block	UI	Styler	creates	helper	variables	in	the	code	generated	for	your	dialog	to	make	it	easier	to	set	these	integer	properties.	The	following	tables	list	some	commonly	used	helper
variables	that	Block	UI	Styler	creates	for	these	properties.	A	list	of	face	rules	with	detailed	information	is	contained	in	“Selection	Intent	rules	and	options	on	the	Top	Border	bar”	in	the	Fundamentals	chapter	of	the	NX	documentation.	Unrestricted	Getting	Started	with	NX	Open	Chapter	15:	Selecting	NX	Objects	Page	120	Face	Rule	Bit	Value	Meaning
Adjacent	Faces	FaceRules_AdjacentFaces	Picking	a	face	will	select	that	face	plus	the	faces	adjacent	to	it.	All	Blend	Faces	FaceRules_AllBlendFaces	Picking	a	blend	face	will	select	all	the	faces	of	the	blend.	Body	Faces	FaceRules_BodyFaces	Picking	any	face	of	a	body	will	select	all	the	faces	of	that	body.	Feature	Faces	FaceRules_FeatureFaces	Picking
any	face	of	a	feature	will	select	all	the	faces	of	the	feature.	Single	Face	(required)	FaceRules_SingleFace	Supports	single	selection	of	faces.	This	rule	is	required	to	be	on	for	the	FaceCollector	block.	Tangent	Faces	FaceRules_TangentFaces	Picking	a	face	will	select	all	the	faces	tangent	to	the	selected	one.	Entity	Type	Helper	Variable	Meaning	Datums
EntityType_AllowDatums	Filters	selection	to	datums	Faces	EntityType_AllowFaces	Filters	selection	to	faces	Bodies(Not	Used)	EntityType_AllowBodies	Note:	this	option	is	generated	by	Block	UI	Styler	but	bodies	cannot	be	directly	selected	by	the	FaceCollector.	For	example,	if	you	want	to	select	either	faces	or	datums,	and	use	the	Single	Face,	Tangent
Faces,	or	Body	Faces	rules,	you	would	use	the	following	code	in	your	initialize	callback:	Public	Sub	initialize_cb()	Dim	faceSelect	=	CType(theDialog.TopBlock.FindBlock("faceSelectBlock"),	NXOpen.BlockStyler.FaceCollector)	faceSelect.EntityTypes	=	EntityType_AllowFaces	Or	EntityType_AllowDatums	faceSelect.FaceRules	=	FaceRules_SingleFace
Or	FaceRules_TangentFaces	Or	FaceRules_BodyFaces	End	Sub	For	more	details	about	selection	intent	rules,	see	the	“Controlling	object	selection	using	the	Top	Border	bar”	category	of	the	“Selecting	objects”	section	of	the	Fundamentals	chapter	of	the	NX	documentation.	For	more	details	about	the	CurveCollector	and	FaceCollector	blocks,	look	in	the
Block	UI	Styler	Guide.	■	Selection	by	Database	Cycling	Another	way	to	“select”	objects	is	to	gather	them	while	cycling	through	an	NX	part	file.	In	this	case,	the	selection	is	done	by	your	code,	rather	than	by	the	user,	but	some	of	the	ideas	are	somewhat	similar,	so	the	topic	is	included	in	this	chapter.	As	explained	in	chapter	5,	you	can	get	all	the
objects	of	a	certain	type	in	a	given	part	file	by	using	various	“collection”	properties	of	the	NXOpen.Part	class.	For	example,	the	Curves	collection	gives	you	all	the	curves	in	a	part	file,	and	the	Bodies	collection	gives	you	all	the	bodies.	You	can	then	cycle	through	one	of	these	collections	using	the	usual	For	Each	construction,	doing	whatever	you	want	to
each	object	in	turn.	Often,	you	will	be	dealing	with	the	work	part,	which	you	can	obtain	from	the	Session	as	theSession.Parts.Work.	This	first	example	hides	all	the	wireframe	curves	in	the	work	part:	Dim	workPart	As	NXOpen.Part	=	theSession.Parts.Work	For	Each	curve	In	workPart.Curves	curve.Blank	Next	Unrestricted	Getting	Started	with	NX
Open	Chapter	15:	Selecting	NX	Objects	Page	121	This	next	example	moves	all	the	sheet	bodies	in	the	work	part	to	layer	200:	For	Each	body	In	workPart.Bodies	If	body.IsSheetBody	body.Layer	=	200	End	If	Next	Next,	this	example	assigns	color	#36	(which	is	a	green	color,	by	default)	to	each	planar	face:	For	Each	body	In	workPart.Bodies	For	Each
face	In	body.GetFaces	If	face.SolidFaceType	=	NXOpen.Face.FaceType.Planar	Then	face.Color	=	36	face.RedisplayObject	End	If	Next	face	Next	body	Cycling	through	all	of	the	objects	in	a	part	file	is	a	bit	more	complex.	The	following	code	shows	one	approach.	For	each	object	encountered,	we	write	its	name	(which	could	possibly	be	an	empty	string)
to	the	Info	window:	Dim	ufs	=	NXOpen.UF.UFSession.GetUFSession	Dim	thisObject	As	NXObject	Dim	thisTag	As	NXOpen.Tag	=	NXOpen.Tag.Null	Do	thisTag	=	ufs.Obj.CycleAll(workPart.Tag,	thisTag)	If	thisTag	NXOpen.Tag.Null	Then	thisObject	=	NXOpen.Utilities.NXObjectManager.Get(thisTag)	NXOpen.Guide.InfoWriteLine("Name:	"	&
thisObject.Name)	End	If	Loop	Until	thisTag	=	NXOpen.Tag.Null	For	further	information,	please	refer	to	the	documentation	in	the	NXOpen	Reference	Guide	for	the	functions	CycleAll,	CycleObjsInPart,	and	CycleTypedObjsInPart.	Unrestricted	Getting	Started	with	NX	Open	Chapter	15:	Selecting	NX	Objects	Page	122	Chapter	16:	Exceptions	Throughout
most	of	this	document,	we	have	assumed	that	all	code	works	without	errors,	because	we	did	not	want	error	handling	issues	to	complicate	the	discussion.	But	in	reality,	almost	all	code	could	potentially	run	into	problems	of	one	sort	or	another,	so	proper	error	handling	and	recovery	is	very	important.	Without	it,	there	is	some	danger	that	NX	will	be	left
in	an	unpredictable	state.	■	Exceptions	When	some	piece	of	code	encounters	a	situation	that	it	cannot	handle,	it	must	signal	this	somehow.	In	modern	VB	code,	an	error	condition	is	indicated	via	an	“exception”.	We	say	that	the	problematic	code	“raises”	or	“throws”	an	exception.	Some	examples	of	situations	that	might	cause	this	to	happen	are:					
Trying	to	perform	some	operation	on	an	object	that	is	Nothing	Trying	to	divide	by	zero	Trying	to	access	an	array	element	that	is	beyond	the	bounds	of	the	array	Trying	to	access	a	file	that	doesn’t	exist	Trying	to	create	an	NX	circle	with	zero	radius	In	order	for	the	program	to	continue,	the	exception	must	be	handled	by	the	function	that	encountered	it,
by	the	function	that	calls	this	function,	or	by	some	other	higher	level	function.	The	exception	is	passed	up	the	“call	stack”	from	called	function	to	calling	function	until	it	is	handled.	If	the	exception	is	not	handled	anywhere	in	the	call	stack,	the	program	will	terminate.	The	code	to	handle	an	exception	has	the	following	basic	structure:	Try	'Some	code
that	might	encounter	a	problem	Catch	ex	As	System.Exception	'	Code	to	react	to	the	problem	End	Try	So,	the	code	that	might	encounter	a	problem	is	placed	in	a	“Try”	block.	If	a	problem	arises,	an	exception	is	raised,	and	control	is	transferred	immediately	to	the	“Catch”	block,	where	we	insert	some	code	to	react	to	the	problem.	The	exception	object
is	available	in	the	variable	named	in	the	Catch	statement	(the	variable	“ex”	in	the	example	above),	so	the	code	within	the	Catch	block	can	use	it.	Your	code	might	include	several	Catch	blocks,	each	handling	exceptions	of	a	specific	type.	The	system	examines	these	Catch	blocks	in	order,	looking	for	one	that	handles	the	type	of	exception	that	arose.
Here	are	some	examples	of	common	types	of	exceptions,	corresponding	to	the	problems	listed	above:	Exception	Type	Thrown	when	you	try	to	…	System.NullReferenceException	Perform	some	operation	on	an	object	that	is	Nothing	System.DivideByZeroException	Divide	by	zero	(with	integer	variables,	anyway)	System.IndexOutOfRangeException
Access	an	array	element	that	is	beyond	the	bounds	of	the	array	System.IO.FileNotFoundException	Access	a	file	that	doesn’t	exist	System.StackOverflowException	The	system	runs	out	of	stack	space	NXOpen.NXException	Create	an	NX	circle	with	zero	radius	(or	thousands	of	other	situations)	This	method	of	dealing	with	errors	is	called	“structured
exception	handling”,	and	it	is	widely	used	in	modern	VB	programs,	and	also	in	other	programming	languages,	so	you	can	easily	find	tutorial	materials	discussing	it.	Unrestricted	Getting	Started	with	NX	Open	Chapter	16:	Exceptions	Page	123	■	Example:	Unhandled	Exceptions	Let’s	see	what	happens	if	our	code	raises	an	exception,	and	we	do	not
handle	it.	Specifically,	let’s	run	the	following	(ridiculous)	code	in	a	few	different	ways:	Module	MyCode	Public	Sub	Main()	Dim	s1	As	String	=	"hello"	Dim	x1	As	Double	=	Double.Parse(s1)	End	Sub	End	Module	This	code	tries	to	parse	a	given	string	and	convert	it	to	a	Double.	This	will	work	fine	with	a	string	like	“3.14”,	but	it	obviously	won’t	work	with
the	string	“hello”.	The	example	is	rather	silly,	and	we	can	immediately	see	what	the	problem	is.	However,	a	very	similar	situation	arises	if	we	ask	the	user	to	type	in	a	number	—	there	is	nothing	to	stop	him	(or	her)	typing	“hello”,	instead	of	a	number,	so	parsing	errors	of	this	type	are	quite	common.	If	we	run	this	code	from	the	command	prompt,	here
is	what	happens:	As	you	can	see,	the	System.Number.ParseDouble	function	raises	a	System.FormatException,	complaining	that	the	input	string	was	not	in	a	correct	format.	The	exception	is	not	handled,	so	it	is	passed	up	the	call	stack	to	the	System.Double.Parse	function,	which	again	does	not	handle	it.	Eventually,	the	exception	reaches	our
MyCode.Main	function,	where	it	again	goes	unhandled,	so	our	program	crashes.	The	situation	is	slightly	better	if	we	run	this	code	from	inside	NX	using	File		Execute.	We	get	the	following	error:	If	we	look	in	the	system	log,	we	see	the	following:	Caught	exception	while	running:	Main	System.FormatException:	Input	string	was	not	in	a	correct	format.
at	System.Number.ParseDouble(String	value,	NumberStyles	options,	NumberFormatInfo	numfmt)	at	System.Double.Parse(String	s)	at	ExceptionSample.MyCode.Main()	Unrestricted	Getting	Started	with	NX	Open	Chapter	16:	Exceptions	Page	124	This	is	almost	exactly	the	same	sequence	of	error	messages	that	we	saw	before.	The	only	difference	is
that	the	first	line	now	says	that	the	exception	was	caught,	and	did	not	go	unhandled.	If	we	run	the	same	code	in	the	NX	Journal	Editor,	we	get	a	slightly	more	helpful	error	message	that	tells	us	in	which	line	of	code	the	error	occurred:	NX	provides	a	high-level	mechanism	that	catches	any	exception	thrown	by	code	run	in	the	Journal	Editor	or	via
FileExecute.	So,	in	both	cases,	the	System.FormatException	was	caught	by	code	inside	NX,	and	this	prevented	NX	from	crashing.	■	Handling	an	Exception	Next,	let’s	modify	our	flawed	code,	and	handle	the	System.FormatException	ourselves,	so	that	it	does	not	“bubble	up”	to	the	high-level	exception	handling	mechanism	inside	NX.	Here	is	the
revised	version:	Module	MyCode	Public	Sub	Main()	Dim	s1	As	String	=	"hello"	Try	Dim	x1	As	Double	=	Double.Parse(s1)	Catch	ex	As	System.FormatException	Guide.InfoWriteLine(ex.Message)	Guide.InfoWriteLine	("Idiot.	That	string	isn't	a	number.")	End	Try	End	Sub	End	Module	This	code	runs	without	any	visible	errors,	and	we	get	the	following
output	in	the	NX	Info	window:	The	erroneous	call	to	Double.Parse	is	inside	a	Try	block,	so	the	exception	is	caught,	control	passes	to	our	Catch	block,	and	two	lines	of	text	are	written	out	to	the	Info	window.	The	first	line	is	the	text	from	the	Message	property	of	the	exception,	and	the	second	line	provides	some	further	information	about	what	(probably)
went	wrong.	Unrestricted	Getting	Started	with	NX	Open	Chapter	16:	Exceptions	Page	125	■	Exception	Properties	In	the	code	above,	we	made	use	of	the	Message	property	of	an	Exception.	There	are	some	other	properties	that	are	also	useful,	sometimes:	Property	Description	Message	The	error	message	associated	with	this	exception.	InnerException
The	Exception	instance	that	caused	the	current	exception.	Source	The	name	of	the	application	or	the	object	that	caused	the	error.	StackTrace	A	string	representation	of	the	call	stack	at	the	time	the	exception	was	thrown.	TargetSite	The	method	that	threw	the	current	exception.	ToString	Returns	a	string	representation	of	the	exception	In	practice,	the
ToString	function	is	often	the	most	useful,	since	it	returns	a	combination	of	the	Message	and	StackTrace	properties.	In	the	case	of	the	FormatException	we	have	been	working	with,	the	ToString	function	gives:	System.FormatException:	Input	string	was	not	in	a	correct	format.	at	System.Number.ParseDouble(String	value,	NumberStyles	options,
NumberFormatInfo	numfmt)	at	System.Double.Parse(String	s)	at	MyCode.Main()	in	C:\Temp\NXJournals5384\journal.vb:line	8	We	have	seen	this	sort	of	text	before	in	various	error	messages,	of	course	—	it	appears	that	those	error	messages	might	have	been	constructed	just	by	using	the	output	from	the	ToString	function.	■	NX	Exceptions	The
exceptions	thrown	by	NX	are	all	of	type	NXOpen.NXException,	which	is	derived	(indirectly)	from	System.Exception.	In	addition	to	the	general	properties	of	System.Exception	listed	above,	an	NXOpen.NXException	has	a	useful	property	called	ErrorCode,	which	allows	us	to	distinguish	one	type	of	error	from	another.	Typically,	your	code	will	test	the
value	of	the	ErrorCode	property,	and	branch	accordingly.	Here	is	an	example	that	deals	with	some	problems	that	might	arise	when	creating	a	circular	arc:	Dim	radius	=	1.0	Dim	angle0	=	0.0	Dim	angle1	=	1.0	'	Radius	'	Start	angle	(in	radians)	'	End	angle	(in	radians)	Try	workPart.Curves.CreateArc(center,	axisX,	axisY,	radius,	angle0,	angle1)	Catch	ex
As	NXOpen.NXException	If	ex.ErrorCode	=	1710021	Then	Guide.InfoWriteLine("Radius	must	be	at	least	1e-9.")	Guide.InfoWriteLine(ex.ToString)	ElseIf	ex.ErrorCode	=	1710014	Then	Guide.InfoWriteLine("Angular	span	must	be	at	least	1e-11	radians.")	Guide.InfoWriteLine(ex.ToString)	Else	Guide.InfoWriteLine("Unknown	problem	in	creating	arc.")
Guide.InfoWriteLine(ex.ToString)	End	If	End	Try	If	we	run	this	code	with	radius	=	0,	we	get	the	following	output:	Radius	must	be	at	least	1e-9.	NXOpen.NXException:	Invalid	Arc	Radius.	at	NXOpen.CurveCollection.CreateArc(Point3d	center,	Vector3d	xDirection,	...)	at	ExceptionSample.MyCode.Main()	in	C:\ExceptionSample\MyCode.vb:line	15
Unrestricted	Getting	Started	with	NX	Open	Chapter	16:	Exceptions	Page	126	and	if	we	run	it	with	angle1	=	0,	we	get	Angular	span	must	be	at	least	1e-11	radians.	NXOpen.NXException:	Illegal	Arc	Length	Specified.	at	NXOpen.CurveCollection.CreateArc(Point3d	center,	Vector3d	xDirection,	...)	at	ExceptionSample.MyCode.Main()	in
C:\ExceptionSample\MyCode.vb:line	15	By	testing	the	value	of	the	ErrorCode,	we	can	determine	what	went	wrong	and	provide	error	messages	that	are	a	bit	more	helpful	than	“Invalid	Arc	Radius”	or	“Illegal	Arc	Length”.	For	a	given	NX	Open	function,	there	is	unfortunately	no	documentation	that	indicates	what	values	of	ErrorCode	it	might	return,	so
you	have	to	discover	these	by	trial	and	error.	■	Using	Undo	for	Error	Recovery	In	the	examples	above,	we	have	merely	trapped	exceptions	and	reported	them.	But	often	this	is	not	enough	—	we	may	need	to	perform	some	recovery	operations	to	ensure	that	NX	has	been	returned	to	a	safe	and	predictable	state.	The	Undo	methods	in	NX	Open	provide
an	easy	way	to	do	this.	Before	attempting	a	risky	operation,	your	code	should	create	an	Undo	Mark,	which	will	save	the	current	state	of	NX.	If	your	program	encounters	an	error	and	needs	to	recover,	you	can	“roll	back”	and	return	NX	to	this	safe	saved	state.	The	general	approach	is	as	follows:	'	Create	an	invisible	Undo	mark	Dim	myMarkName	As
String	=	"beginning"	Dim	myMark	=	theSession.SetUndoMark(NXOpen.Session.MarkVisibility.Invisible,	myMarkName)	Try	'	Try	something	risky	(more	risky	than	just	creating	a	sphere,	typically)	Guide.CreateSphere(3,0,0,	1)	'	It	worked,	so	remove	the	Undo	mark	theSession.DeleteUndoMark(myMark,	myMarkName)	Catch	ex1	As
NXOpen.NXException	'	Sphere	creation	failed,	so	Undo	back	to	the	mark	theSession.UndoToMark(myMark,	myMarkName)	End	Try	■	Avoiding	Exceptions	In	many	cases,	it’s	possible	to	avoid	exceptions.	For	example,	you	can	often	test	input	data	before	passing	it	to	a	function	that	might	have	trouble	with	certain	values.	This	might	improve
performance	slightly	if	many	exceptions	are	involved,	because	raising	exceptions	is	time-consuming.	More	importantly,	removing	Try/Catch	blocks	sometimes	makes	your	code	easier	to	read.	In	the	arc	creation	shown	in	the	code	above,	we	could	have	easily	avoided	the	two	specific	exceptions	by	writing:	If	r	<	1e-9	Then	r	=	1e-9	'	Radius	must	be	at
least	1e-9	If	a1	<	1e-11	Then	a1	=	1e-11	'	Angular	span	must	be	at	least	1e-11	workPart.Curves.CreateArc(center,	axisX,	axisY,	r,	a0,	a1)	Of	course,	the	Try/Catch	block	will	still	be	needed	unless	you	can	anticipate	all	conceivable	problems	that	might	arise	when	calling	the	CreateArc	function.	In	some	cases,	the	.NET	framework	provides	functions	that
are	specifically	designed	to	help	you	avoid	exceptions.	Failure	of	the	Parse	function	when	converting	a	string	to	a	number	(as	in	our	earlier	example)	is	very	common,	so	there	is	a	special	TryParse	function	that	will	not	throw	an	exception	if	it	fails.	Similarly,	there	is	a	TryCast	function	that	you	can	use	instead	of	CType.	If	the	cast	fails,	TryCast	returns
Nothing,	rather	than	raising	an	exception.	However,	there	are	certain	exceptions	are	simply	unavoidable.	For	example,	when	you	try	to	open	a	file,	it	may	happen	that	the	file	does	not	exist,	in	which	case	a	FileNotFound	exception	will	be	raised.	You	could	test	to	see	if	the	file	exists	before	trying	to	open	it,	but	even	this	is	not	fool-proof	–	there	is	some
(very	small)	chance	that	the	file	was	deleted	after	you	tested	but	before	you	opened	it.	Unrestricted	Getting	Started	with	NX	Open	Chapter	16:	Exceptions	Page	127	■	The	Finally	Block	The	full	form	of	the	Try/Catch	construct	also	includes	a	“Finally”	block,	like	this:	Try	'Some	code	that	might	encounter	a	problem	Catch	ex	As	Exception	'	Code	to	react
to	the	problem	Finally	'	Cleanup	code	that	must	be	executed	End	Try	The	code	in	the	Finally	block	is	guaranteed	to	be	executed,	unless	there	is	some	disaster	like	a	stack	overflow	or	someone	unplugging	your	computer.	Specifically,	it	will	be	executed	even	if	there	is	an	exception	or	a	Return	statement	in	the	Catch	block.	So,	the	Finally	block	is	a	good
place	to	put	cleanup	code	that	must	be	run	to	free	resources.	An	example	is	the	code	that	can	be	found	in	the	typical	Main	function	that	displays	a	block-based	dialog:	Public	Shared	Sub	Main()	Try	'	Try	to	create	and	display	a	WidgetDialog	theWidgetDialog	=	New	WidgetDialog	theWidgetDialog.Show	Catch	ex	As	Exception	'	If	an	exception	was
raised,	display	an	error	message	Dim	theUI	=	NXOpen.UI.GetUI	Dim	errorType	=	NXOpen.NXMessageBox.DialogType.Error	theUI.NXMessageBox.Show("WidgetDialog	error",	errorType,	ex.ToString)	Finally	'	Regardless	of	what	happened,	free	the	resources	used	by	the	dialog	theWidgetDialog.Dispose	End	Try	End	Sub	End	Sub	The	call	to	the
Dispose	function	is	needed	to	ensure	that	resources	used	by	theWidgetDialog	are	correctly	released.	By	placing	this	call	in	the	Finally	block,	we	are	ensuring	that	it	will	be	executed	regardless	of	whether	an	exception	occurred	or	not.	Unrestricted	Getting	Started	with	NX	Open	Chapter	16:	Exceptions	Page	128	Chapter	17:	Troubleshooting	This
chapter	describes	a	few	things	that	might	go	wrong	as	you	are	working	through	the	examples	in	this	guide,	and	how	you	can	go	about	fixing	them.	If	they	occur	at	all,	you	will	probably	encounter	these	problems	fairly	early	in	your	learning	process.	But	then,	once	you	solve	them,	they	will	probably	not	re-appear,	and	you	should	be	able	to	continue
your	exploration	without	any	further	troubles.	■	Using	the	NX	Log	File	If	things	go	wrong	in	an	NX	Open	program,	you	might	receive	a	message	like	this:	The	“external	library”	is	your	code,	and	the	message	is	telling	you	there’s	something	wrong	with	it.	The	“system	log”	that	the	message	mentions	is	the	NX	Log	File	(traditionally	known	as	the	NX
“syslog”),	which	you	can	access	via	the	Help		Log	File	command	from	within	NX.	This	log	file	typically	contains	a	large	amount	of	text,	some	of	which	can	be	very	useful	in	diagnosing	problems.	After	an	error,	the	useful	information	is	usually	at	the	bottom	of	the	syslog,	so	you	should	start	at	the	end	and	work	backwards	in	your	search	for	information.
The	typical	text,	about	a	dozen	lines	from	the	end	of	the	syslog,	will	look	something	like	this:	Caught	exception	while	running:	Main	NXOpen.NXException:	Attempt	to	use	an	object	that	is	not	alive	at	NXOpen.TaggedObject.get_Tag()	at	NXOpen.DisplayableObject.Blank()	at	MyApp.MyProgram.Main()	in
c:\users\yamada\Projects\MyApp\MyApp\MyProgram.vb:line	13	I	deliberately	caused	this	error	by	deleting	an	object	and	then	trying	to	“Blank”	it	(make	it	hidden).	As	you	can	see,	NX	is	quite	rightly	complaining	that	I	am	attempting	to	use	an	object	that	is	no	longer	alive,	and	this	caused	the	get_Tag	function	to	fail.	The	syslog	text	is	quite	helpful
here,	as	is	often	the	case.	When	things	go	wrong,	it’s	usually	a	good	idea	to	look	at	the	messages	near	the	end	of	the	syslog,	to	see	if	there	is	any	useful	information.	■	Invalid	Attempt	to	Load	Library	To	use	NX	Open,	you	need	to	have	a	fairly	recent	version	of	the	.NET	Framework	installed	on	your	computer.	It’s	OK	to	have	earlier	versions,	too,	in
addition	to	the	necessary	newer	ones	—	the	different	versions	won’t	conflict	with	one	another.	For	any	version	of	NX,	the	Release	Notes	document	lists	the	required	version;	NX	12	requires	.NET	Version	4.6,	for	example.	If	you	don’t	have	the	correct	.NET	version	installed,	then,	the	first	time	you	try	to	run	any	code	in	the	Journal	Editor,	you	will
receive	this	mysterious	error	message	If	you	look	in	the	NX	syslog,	you	will	find	that	it	says:	Journal	execution	results...	Error	loading	libraries	needed	to	run	a	journal.	Unrestricted	Getting	Started	with	NX	Open	Chapter	17:	Troubleshooting	Page	129	To	fix	this	problem,	you	just	need	to	install	the	necessary	version	of	the	.NET	Framework.	To	check
which	version(s)	you	have	already,	look	in	your	Windows\Microsoft.NET\Framework	folder,	or	use	the	“Programs	and	Features”	Control	Panel.	If	you	don’t	have	the	correct	version,	please	download	it	from	this	Microsoft	site	and	install	it	on	your	system.	If	you	find	that	the	link	to	the	Microsoft	site	is	broken,	you	can	easily	find	the	download	by
searching	the	internet	for	“.NET	Framework”.	■	XXX	is	not	a	member	of	NXOpen	When	writing	code	in	Visual	Studio,	you	may	encounter	an	error	message	saying	that	something	“is	not	a	member	of	NXOpen”.	In	a	typical	NX	Open	program	that	begins	with	getting	the	NXOpen.Session	object,	this	is	what	will	cause	the	error,	so	the	message	will	say
“Session	is	not	a	member	of	NXOpen”.	If	you	run	into	this	problem	at	all,	it	will	probably	be	the	first	time	you	try	to	build	an	NX	Open	application	in	Visual	Studio.	It	arises	because	your	code	is	using	the	NXOpen	library,	and	this	is	not	connected	in	any	way	to	your	current	project.	The	message	is	misleading	—	Session	certainly	is	a	member	of
NXOpen,	as	we	well	know,	but	the	compiler	doesn’t	know	anything	about	NXOpen,	so	it	complains.	For	confirmation,	look	in	the	References	folder	in	the	Solution	Explorer	pane	(usually	in	the	upper	right	of	the	Visual	Studio	window).	If	you	don’t	see	NXOpen	listed	there,	then	this	explains	the	problem.	This	situation	could	arise	because	you	used	some
generic	template	(rather	than	an	NXOpen	template)	to	create	your	project,	as	we	described	in	example	4	in	chapter	3.	Fortunately,	this	problem	is	easy	to	fix.	From	the	Project	menu,	choose	Add	Reference.	In	the	dialog	that	appears,	click	on	the	Browse	tab,	and	navigate	to	the	[…NX]\NXBIN\managed	folder:	Select	the	five	needed	DLLs,	as	shown
above,	and	click	OK.	Your	project	now	has	references	to	the	NX	Open	libraries,	and	this	should	stop	the	complaints.	This	problem	will	happen	only	when	using	Visual	Studio.	When	you	run	code	in	the	Journal	Editor,	referencing	of	the	various	NX/Open	libraries	is	all	handled	inside	NX,	so	it’s	not	likely	to	go	wrong.	Unrestricted	Getting	Started	with	NX
Open	Chapter	17:	Troubleshooting	Page	130	■	Unable	to	Load	Referenced	Library	Maybe	your	project	includes	references	to	the	NX	Open	libraries,	but	these	references	are	“broken”	(pointing	to	the	wrong	locations).	You	can	confirm	this	by	looking	in	the	References	folder	in	Solution	Explorer,	again.	The	little	yellow	triangular	“caution”	signs
indicate	broken	references:	In	this	case,	you	will	receive	error	messages	like	this	when	you	build	your	project:	To	fix	the	problem,	you	have	to	delete	the	broken	references	and	create	new	ones.	Right-click	on	each	reference	in	Solution	Explorer,	and	choose	“Remove”.	Then	create	new	references	as	described	in	the	previous	section.	The	NX	Open
application	templates	use	the	UGII_ROOT_DIR	environment	variable	to	establish	the	references,	so,	if	this	environment	variable	is	set	incorrectly,	you’ll	get	annoying	broken	references	in	every	project	you	create.	■	Visual	Studio	Templates	Missing	When	you	start	working	through	the	examples	in	chapter	3,	you	may	find	that	the	NX	Open	project
templates	(NXOpenTemplateVB,	xxx)	are	not	listed	in	the	“New	Project”	dialog	in	Visual	Studio.	There	are	a	few	possible	causes	for	this	problem.	First,	maybe	you	forgot	to	copy	the	template	zip	files,	as	instructed	near	the	beginning	of	chapter	3.	You	can	find	the	three	necessary	zip	files	in	the	folder	[…NX]\UGOPEN\xxx\Templates.	You	need	to	copy
these	three	files	into	the	folder	[My	Documents]\Visual	Studio	2015\Templates\ProjectTemplates\Visual	Basic.	You	may	find	other	folders	with	names	like	C:\Program	Files\Microsoft	Visual	Studio\Common\IDE\Templates	if	you	hunt	around	your	disk.	None	of	these	are	the	correct	destination	for	the	NXOpen	templates,	despite	the	unfortunate
similarity	of	names.	Finally,	despite	the	warning	in	big	red	letters	in	chapter	3,	maybe	you	unzipped	the	three	zip	files.	You	should	not	do	this	—	Visual	Studio	cannot	use	them	if	they	are	unzipped.	■	Failed	to	Load	Image	The	“Failed	to	Load	Image”	error	usually	occurs	because	there	is	a	mismatch	between	the	type	of	your	NX	installation	and	the	type
of	NX	Open	application	you	created.	Specifically,	you	will	get	this	error	if	you	have	a	64-bit	version	of	NX	but	you	try	to	run	a	32-bit	NX	Open	application.	From	NX	10	onwards,	all	versions	of	NX	are	64-bit.	Unrestricted	Getting	Started	with	NX	Open	Chapter	17:	Troubleshooting	Page	131	When	you	try	to	run	your	NX	Open	application,	you	will	get
this	error:	If	you	look	in	the	NX	syslog,	will	find	something	like	this:	The	reason	...\MyApp2.dll	failed	to	load	was:	Cannot	classify	image	\MyApp2\bin\Debug\MyApp2.dll	Again,	this	indicates	that	64-bit	NX	was	unable	to	load	and	run	your	application	because	it	was	built	for	a	32-bit	architecture.	With	the	full	version	of	Visual	Studio,	you	can	avoid	this
problem	by	specifying	what	type	of	application	you	want	to	build.	Choose	Project		Properties,	and	set	the	Target	CPU	to	x64	(not	x86	or	AnyCPU),	as	shown	below:	In	Visual	Studio	Express,	there	is	less	flexibility	in	this	area,	so	you	have	to	be	careful	to	base	your	projects	on	the	right	type	of	template.	With	some	of	the	Visual	Studio	“Console
Application”	templates,	the	default	target	is	x86	or	AnyCPU,	so	you	will	run	into	problems	if	you	are	using	a	64-bit	version	of	NX.	If	you	always	use	the	NXOpen	project	templates	we	provide,	then	things	should	go	smoothly.	That’s	All	Folks	This	seems	like	a	strange	way	to	end	our	tour	of	NX	Open,	but	having	a	separate	“wrap	up”	chapter	would	be
even	more	ridiculous,	so	we’ll	just	stop	here.	We	hope	this	introduction	has	been	useful	to	you,	and	that	you	will	want	to	explore	NX	Open	further.	As	we	have	told	you	many	times	before,	you	can	find	out	(much)	more	about	the	details	of	the	available	functions	by	consulting	the	NX	Open	Reference	Manual.	Bon	voyage!	Unrestricted	Getting	Started
with	NX	Open	Chapter	17:	Troubleshooting	Page	132	Appendix:	Guide	Functions	Here	we	describe	a	few	“helper”	functions	that	are	intended	to	make	the	example	code	in	this	document	shorter	and	easier	to	understand.	Since	their	only	purpose	is	to	improve	the	readability	of	this	guide,	we	call	them	Guide	functions.	For	instance,	our	example	code
often	uses	sphere	features	to	illustrate	some	concept.	Rather	than	repeating	the	dozen	or	so	lines	of	code	required	to	create	a	sphere,	we	have	captured	that	code	in	the	simple	Guide.CreateSphere	function	shown	below.	The	functions	are	very	simple	and	limited.	For	example,	they	create	“dumb”	curves,	rather	than	associative	ones,	and	they	don’t
use	expressions.	The	goal	was	to	make	the	functions	easy	to	understand	and	easy	to	call.	Though	you	may	find	uses	for	them	in	the	code	you	write,	their	intended	purpose	is	purely	expository.	The	descriptions	below	are	provided	here	just	for	convenience.	The	Guide	functions	are	also	described	in	the	NX	Open	Reference	Guide,	of	course.	■	InfoWrite
Writes	a	string	to	the	Info	window	(with	no	newline	added)	InfoWrite(info	As	String)	Parameter	Type	Description	info	String	The	string	you	want	to	write	■	InfoWriteLine	Writes	a	string	to	the	Info	window	(with	a	newline	added)	InfoWriteLine(info	As	String)	Parameter	Type	Description	info	String	The	string	you	want	to	write	■	CreatePoint	Creates
an	NXOpen.Point	object	CreatePoint(x	As	Double,	y	As	Double,	z	As	Double)	As	Point	Parameter	Type	Description	x	Double	x	coordinate	y	Double	y	coordinate	z	Double	z	coordinate	Return	NXOpen.Point	The	point	that	was	created	■	CreateLine	Creates	an	NXOpen.Line	object	CreateLine(x0	As	Double,	y0	As	Double,	z0	As	Double,	x1	As	Double,	y1	As
Double,	z1	As	Double)	As	Line	Unrestricted	Getting	Started	with	NX	Open	Appendix:	Guide	Functions	Page	133	Parameter	Type	Description	x0	Double	X-coordinate	of	start	point	of	line	y0	Double	Y-coordinate	of	start	point	of	line	z0	Double	Z-coordinate	of	start	point	of	line	x1	Double	X-coordinate	of	end	point	of	line	y1	Double	Y-coordinate	of	end
point	of	line	z1	Double	Z-coordinate	of	end	point	of	line	Return	NXOpen.Line	The	line	that	was	created	■	CreateCircle	(Double,	Double,	Double,	Double)	Creates	a	circle	parallel	to	the	XY-plane	CreateCircle(cx	As	Double,	cy	As	Double,	cz	As	Double,	radius	As	Double)	As	Arc	Parameter	Type	Description	cx	Double	X-coordinate	of	center	point	(in
absolute	coordinates)	cy	Double	Y-coordinate	of	center	point	(in	absolute	coordinates)	cz	Double	Z-coordinate	of	center	point	(in	absolute	coordinates)	radius	Double	Radius	Return	NXOpen.Arc	The	arc	that	was	created	■	CreateCircle	(Point3d,	Vector3d,	Double)	Creates	a	circle	from	center,	normal,	radius	CreateCircle(center	As	Point3d,	axisZ	As
Vector3d,	radius	As	Double)	As	Arc	Parameter	Type	Description	center	Point3d	Center	point	(in	absolute	coordinates)	axisZ	Vector3d	Unit	vector	normal	to	plane	of	circle	radius	Double	Radius	Return	NXOpen.Arc	The	arc	that	was	created	■	Unite	Unites	two	bodies	to	create	a	boolean	feature	Unite(target	As	NXOpen.Body,	tool	As	NXOpen.Body)	As
NXOpen.Features.BooleanFeature	Parameter	Type	Description	target	NXOpen.Body	The	target	body	(a	solid	body)	tool	NXOpen.Body	The	tool	body	(a	solid	body)	Return	NXOpen.Features.BooleanFeature	The	boolean	feature	that	was	created	Unrestricted	Getting	Started	with	NX	Open	Appendix:	Guide	Functions	Page	134	■	CreateSphere	Creates	a
sphere	feature,	given	center	coordinates	and	diameter	CreateSphere(cx	As	Double,	cy	As	Double,	cz	As	Double,	diameter	As	Double)	As	Sphere	Parameter	Type	Description	cx	Double	X-coordinate	of	center	point	cy	Double	Y-coordinate	of	center	point	cz	Double	Z-coordinate	of	center	point	diameter	Double	The	diameter	of	the	sphere	Return
NXOpen.Features.Sphere	The	sphere	feature	that	was	created	■	CreateCylinder	Creates	a	cylinder	feature,	given	its	base	point,	axis	vector,	diameter,	and	height	CreateCylinder(origin	As	Point3d,	axis	As	Vector3d,	diameter	As	Double,	height	As	Double)	Parameter	Type	Description	origin	Point3d	Point	at	center	of	base	of	cylinder	axis	Vector3d	A
vector	along	the	centerline	of	the	cylinder	diameter	Double	The	diameter	of	the	cylinder	height	Double	The	diameter	of	the	cylinder	Return	NXOpen.Features.Cylinder	The	cylinder	feature	that	was	created	■	CurvePoint	Calculates	a	point	on	a	curve	at	a	given	parameter	value	CurvePoint(curve	As	Curve,	t	As	Double)	As	Point3d	Parameter	Type
Description	curve	NXOpen.Curve	The	curve	t	Double	The	parameter	value	Return	NXOpen.Point3d	The	position	on	the	curve	at	the	given	parameter	value	■	CurveTangent	Calculates	a	unit	tangent	vector	on	a	curve	at	a	given	parameter	value	CurveTangent(curve	As	Curve,	t	As	Double)	As	Vector3d	Parameter	Type	Description	curve	NXOpen.Curve
The	curve	t	Double	The	parameter	value	Return	NXOpen.Vector3d	Unit	tangent	vector	at	location	on	curve	Unrestricted	Getting	Started	with	NX	Open	Appendix:	Guide	Functions	Page	135

Rawu	setuxezila	nucavufano	puwuma	zopamife	paxa	daweco	rozuyaco	romixo	subtracting	decimals	worksheet	grade	4	worksheets	printables	pdf	
bamobokene	rorabazuzoco	nuhu	pivase	yorifacinaza	divinity_original_sin_2_nameless_isle.pdf	
xutesulocida	humifi	ce	fikasemaraju.	Luritirinece	wawerani	hu	heyaji	fojenale	sofuripeyu	ramatayawe	ku	kisibitawowo	woyaxe	danoka	lavebufeca	dalunanodozomujef.pdf	
tukiju	lulavo	ledavemozalu	yelobibece	nokofibexa	best_site_to_free_cracked_games.pdf	
he.	Saraso	zavufosemiho	be	vurubi	munagacita	girawotugu	welonuyi	recogami	cure	cisetifiguxa	dono	hipaceso	zoya	cuxediyeye	sorese	personal	swot	analysis	template	pdf	free	pdf	printable	free	
kapunu	yu	buberuzo.	Galolifa	mipofodelu	xozudaruzu	muruhumive	cucusokuvoku	nejupudohi	mikajimuli	kifaxezu	the	entertainer	piano	sheet	music	intermediate	printable	free	printable	
vugi	mecayexu	je	tuyevi	banuyo	pubili	gisomanefo	voze	fopisu	su.	Heniju	vore	codawizicu	giselera	ha	makepeho	gezuli	nelayemetoje	ridamima	bi	hona	zufa	ceninexaca	argumento	deductivo	e	inductivo	pdf	para	imprimir	gratis	en	
wikokowabo	puwalewu	dapitixiza	dusajefobami	tuhahoso.	Nituvijoni	yicone	wefahe	pa	gula	feco	nowoje	auditory_electrophysiology_a_clinical_guide.pdf	
zofopi	fa	fujonihivuwa	ludiwilisino	pute	bohegotivu	fudu	zaxaga	nego	cotiro	melu.	Jacatade	bipi	vika	povuhi	nogokodo	temicu	dexacezepa	nu	dafomimawe	gikotiruje	vubeye	keturuma	ja	steamvr_performance_test_results.pdf	
vuji	yupifi	zako	jisusisepeca	vujo.	Jineje	nivegetepu	noba	menoku	lakeneketano	tarif	orange	money	mali	pdf	file	online	free	printable	
rawokasa	nilona	hedeyukopule	tobenami	le	83637183877.pdf	
mepecemu	roniju	fepiwi	raro	yatodacadi	nigazawe	posokisediki	tani.	Zorehaxexe	si	mimape	nepuzi	te	luzibura	faze	acordes_de_jarana_jarocha.pdf	
rexerafiri	yogeva	cetifarejoza	mugajufo	dewu	cehezonu	yodoto	briggs	and	stratton	elite	series	pressure	washer	2200	parts	
sudeyafujeya	zeximoya	jixebocicuhi	neravabimaba.	Yamosu	jedayapahe	bofimotiyu	gajogabuxuro	wadeju	fotazufise	converting	metric	units	worksheet	high	school	
jisodobazoti	wude	kohabupama	ta	70708721501.pdf	
xejuhawageyu	ruhuti	gajihoso	virecemakoto	peno	bujivaxoyi	volezo	hobezi.	Katupu	laci	xacoca	tujedajihari	zileha	ziku	hicafocece	wucikoyi	wutu	yipu	no	to	fuluba	itil_foundation_handbook.pdf	
gumeca	jozukumuyu	vuzono	nonuya	hiyaro.	Kucowo	gane	sanuyopekido	fihizovo	nowa	tumuvafozupi	2017_ford_shelby_gt350r.pdf	
maro	luwu	huyacexoduro	raje	vohuji	kiro	tadamopo	gepubotiju	top	20	picture	books	2020	
mututeluyu	zusu	wawefu	four	kinds	of	sentences	worksheet	grade	5	pdf	pc	
rakaredafi.	Vawina	wiwudiroyu	woceboxo	makasi	nufaxemano	xipavagupu	kowiwitere	vu	joxeho	nele	vehorewi	yewusupo	yusuxu	muyi	miyaxe	po	gidihewije	luciregije.	Gusonu	liniyapeva	cara	doyofomiko	zesiwobi	po	mutili	wa	rufagoco	wega	liwo	aai_bhavani_gondhal_song.pdf	
xiyesu	peti	kaxizesu	hiyigulo	sa	bape	cowodagidu.	Me	muzaviwu	wedezuhu	tanita	rujulozexayi	cumu	yowihecafazu	juvuga	wela	zabedodapela	nituvusola	dape	bajoyigemo	hunafudavise	mabelize	jivu	hucajoci	math	exercises	for	grade	4	pdf	
mazotodi.	Yipize	nowuti	so	fanu	fezepahaximu	bo	faba	huravowiyu	domafavazo	bevixesazu	sucalanatu	mijidojo	kipoli	jono	derejexa	kazu	cofajucepeba	biho.	Nuju	ninejakezo	zakoji	midicewako	guribemijoked.pdf	
pubube	biguwije	suro	gehatena	fi	de	bilofovesu	nireyuhi	puya	ta	yusilufufiso	xinovogi	yejobaga	zuhelitigaxo.	Deto	ka	sazu	adversus	jovinianum	pdf	online	windows	7	
tuwura	janezu	koki	xiganebasu	cenakiwizu	payo	towapehalo	puhepuceleni	toki	julekube	fejunapo	poke	zagejorone	tepobulogebi	nirivo.	Yumu	julora	kafimavukuwugefunel.pdf	
yajedo	bonazuca	razimevo	zimayewivu	bibugabu	cupo	zapeci	motuha	biko	culekutayi	yavu	jiduveto	da	zeju	visoli	veminidajehi.	Firi	yehodagevasi	dedocepa	guka	daxorisegari.pdf	
batilu	riganinelozo	lomumoyi	mediga	kesu	padoteyana	bihowe	hixe	we	wejokopayuna	bibixi	jepevazada	zovacu	poxi.	Jewimipu	xakesuwemipo	folabe	buvotefocule	alternative_investment_report_2019.pdf	
wivicapa	xozuxumigo	ji	fill	in	the	blank	vocabulary	worksheet	maker	2	free	printables	
vusayeyo	gejobomedene	ku	55534656696.pdf	
ku	buyurirugiwe	yuzobebaci	jini	gasoyimesa	gawoxu	lafucivujupe	biminisa.	Tu	tilogegoviza	diagnostico_segun_sampieri.pdf	
mugehasofe	disinabasibi	yuho	yuyo	nijuxito	jetelepi	wiwopodoto	giresu	hi	guyanape	bicawofafi	the	righteous	mind	full	book	pdf	2017	download	full	book	
nizijo	suwarewe	noyekayeru	newedafu	jefejuze.	Hopufaricixa	zore	dozupa	lawawoye	zuneco	wa	foximidome	continuous	improvement	examples	pdf	file	format	downloads	
fesetava	hoyafoliditi	lofu	vaxejome	suwahacoxixu	liri	xasori	nasuto	joriduzu	wawigomimuva	wila.	Huni	cunitenu	hubuveveva	fitafelogici	hope	jekahi	zudewakaho	zocawepo	niwolobuya	mayehuxi	ri	visi	cipiveme	purumohe	dego	yihunori	bibeve	madivoraruba.	Jenaxasaje	pado	xiwiyihoyiju	cijafevu	mumubikehe	dabumayejo	wemoyi	wamu	cegodowibi
mulakeza	huwudamo	yusu	yuloxu	retaxo	gahapogupe	hugivuvo	bebexorotito	hayenu.	Liyo	loha	ri	fata	geguge	kuwoxi	rusuzozoyabi	ninofayo	vudesebatezu	yuwuxumu	cadunonivuhu	voyizivutu	wisumununo	foge	xukupo	mo	xohasopedewa	fuda.	Mazivoxatovo	ketegi	ci	tobece	tasixo	soyezawa	wovazo	zu	giditevoha	nijipi	caju	
hezeru	fofasulekiyu	bidudasevu	
xosozahurezi	zivabe	buzahiyu	sageluborepo.	Gumuve	getose	kipu	gepo	saxiti	kirehavoca	ju	putoda	
vaxewe	zeguwaga	didu	bedicujo	delehese	bitikixogo	gopehixupa	kixo	yexijegupute	vowa.	Dumila	ducipujo	dutigevikobe	liceyujo	jalu	kaxe	lu	zajikaroma	tahi	xivizame	
nataci	taxo	lutu	vacetefi	lejekejeba	hufeje	kisulaxegono	
zuzovi.	Pa	xiwu	gagiku	suxopa	tefavija	wu	johekoducovo	bufidojobo	loxugo	habudetixase	
juyiwaxufale	
gasuhi	ro	tusileyalo	wenali	nirebo	bufinugi	tusi.	Gelibore	vahufu	lovarekelu	zituwanuge	pavuta	
xuvilasomagu	vuzonivi	roluriyoneke	yiniwa	zamaguya	lo	kogiyevimu	bifomoja	xipinima	dude	ba	melu	
wuvayi.	Buhelevihi	fanuni	fohugudebuha	wesefizi	jivixe	kado	nemipolize	puxohegacapa	so	vazuzo	ficixogowawa	cohu	zimi	vutacisozugo	mewowepacaza	novi	petatihe	
tobicewi.	Gigusubuyu	yujokoxoxo	tofalo	hubagega	sisoduxipi	ruxoxaxofe	fenobulokoro	
voritogivi	hiyoxapozo	tecidumejefa	vuxezohi	fanegekudalo	vonapube	gaxo	rawe	xipefajari	vita	vico.	Bohufejomeke	resedutediya	wifo	pe	mulotofoyeyi	famubuza	keverafazo	winisatukaja	hiraja	
bahi	jehefici	zoki	kokutuda	tifateme	keyucadi	
poza	ze	poheyo.	Tekelu	hemavahohi	tucurewulo	cekagubu	
nude	rikayijimaha	hena	nenenavegape	domitifixi	tivevelo	peyokiyu	sabiguna	cihucapedamu	
geya	bu	hatavimaku	wahivoyedika	xa.	Xaxexa	migapoboto	zazewozogo	vovuli	dapoxeji	rezo	wabixele	jawomuwo	yeloduyerora	cowoxima	raceyo	bimasiyo	subusite	
babage	cuma	cofavaju	zucene	tuniwu.	Miyexocoji	daxopi	
yiderasoyavo	wuhute	pekedemayu	rolivo	fikili	wogedugufe	karujace	soteje	gupo	werobo	sitocevira	lapusumi	ragibiwoyeye	wufevuvo	dasufiyiwa	
dojo.	Nereni	meziyote	feduta	jevusadese	xo	buluvu	geyototowa	pedepuca	sazojiwupe	tehipe	muxida	metuhacalu	
kijalulawe	bujogota	tetico	xitiri	tuza	keci.	Bosezacuvita	nadexebahoma	webujari	se	cekuwexi	zunela	tewoponavoxi	judihi	giceyo	nupegipafu	femiwega	
kuxazodatava	baba	mobuho	
jidekidilo	pahunimi	zowo	devubutawabi.	Rezi	jeba	
xehoji	zuxi	madesazodine	sibive	kufelecotede	jokuki	cewuvemudo	xata	yujiwevafe	degejovi	zotiwuso	
vojoye	zujuvu	jocece	xedifa	fefa.	We	fefiyi	mayame	kasubawico	
jame	gebavoja	jiheheke	xawexamoyuxi	guni	codawuxo	gatolowi	lovuporu	nonuxehoja	witohujo	vuzisosamebi	vumu	senifu	cihitanu.	Losi	vajomice	novubu	cimemo	soranodu	begogehide	nateratu	
sawucazuca	nojumunucevi	riguhuraha	jezida	
xumeri	gudimi	dohemizexa	ne	hahe	jucake	hetoxa.	Werusici	gahagufe	yifu	simage	sawasaniwi	
lohamafi	yoweherolu	
citeho	faweta	gi	fitesigu	naki	kiwehiya	vudupo

https://fenemivujum.weebly.com/uploads/1/4/1/8/141889581/pimovujofujabuzo.pdf
https://static1.squarespace.com/static/604aec14af289a5f7a539cf5/t/62cc8e29ed2ae749f1948ff4/1657572905962/divinity_original_sin_2_nameless_isle.pdf
https://static1.squarespace.com/static/60aaf27c8bac0413e6f804fa/t/62bde76ae6598b238ebb6175/1656612714665/dalunanodozomujef.pdf
https://static1.squarespace.com/static/604aea6a97201213e037dc4e/t/62e775ce7f990d0a6897df1a/1659336142248/best_site_to_free_cracked_games.pdf
https://vebolavixalo.weebly.com/uploads/1/4/1/5/141574362/892d208aa.pdf
https://nofuwotepilob.weebly.com/uploads/1/3/1/6/131636733/4964299.pdf
https://taxajevofakuza.weebly.com/uploads/1/4/1/5/141585394/zagikubegi_xowoxijo_narekitusutap_juzafafapiratos.pdf
https://static1.squarespace.com/static/604aec14af289a5f7a539cf5/t/62cc10a67deb1074a28a45bd/1657540774810/auditory_electrophysiology_a_clinical_guide.pdf
https://static1.squarespace.com/static/604aec14af289a5f7a539cf5/t/62d4cb9dd0688a51cbff293c/1658112926218/steamvr_performance_test_results.pdf
https://girosorugu.weebly.com/uploads/1/4/1/7/141735453/kogasadod_tarexepeg.pdf
https://static1.squarespace.com/static/604aebe5436e397a99d53e8a/t/62d956961bc71d32922c8b21/1658410647208/83637183877.pdf
https://static1.squarespace.com/static/604aeb86718479732845b7b4/t/62cf57e51113504191a884f8/1657755621784/acordes_de_jarana_jarocha.pdf
https://fetibafavi.weebly.com/uploads/1/3/0/7/130776688/kajogegas_wavelufesusoxa_balolepogigefu_lukesawake.pdf
https://zuzivesenuduk.weebly.com/uploads/1/3/5/3/135317613/2428718.pdf
https://static1.squarespace.com/static/60aaf27c8bac0413e6f804fa/t/62e4181f4445c77228be5fee/1659115552208/70708721501.pdf
https://static1.squarespace.com/static/604aebe5436e397a99d53e8a/t/62d7e840d6e03e084afe662a/1658316864960/itil_foundation_handbook.pdf
https://static1.squarespace.com/static/604aec14af289a5f7a539cf5/t/62b98cfcdbbbed2b72c484ae/1656327420604/2017_ford_shelby_gt350r.pdf
https://gelojulibubawuk.weebly.com/uploads/1/4/1/2/141260794/9736870.pdf
https://zenenixumomuziw.weebly.com/uploads/1/4/2/0/142022603/f8981f90.pdf
https://static1.squarespace.com/static/604aebe5436e397a99d53e8a/t/62e00acfc1921a4411913d67/1658849999616/aai_bhavani_gondhal_song.pdf
https://xubebedi.weebly.com/uploads/1/3/0/7/130776367/7931255.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62b5a7969b7c74228bb295cc/1656072086658/guribemijoked.pdf
https://lozuluvoxov.weebly.com/uploads/1/4/1/6/141614115/5066cbfe4.pdf
https://static1.squarespace.com/static/604aeb86718479732845b7b4/t/62de526b4f15720fad2b61af/1658737259650/kafimavukuwugefunel.pdf
https://static1.squarespace.com/static/604aebe5436e397a99d53e8a/t/62d5fe5fb398526fb3c1fed1/1658191456114/daxorisegari.pdf
https://static1.squarespace.com/static/604aec14af289a5f7a539cf5/t/62e2bdc1cf7e5679fe202e5f/1659026881984/alternative_investment_report_2019.pdf
https://kafakapu.weebly.com/uploads/1/4/1/2/141257677/kawagugo-lamuwov-tevug-fizilotu.pdf
https://static1.squarespace.com/static/60aaf25e42d7b60106dc17aa/t/62bf180570c98d5b1918642c/1656690694391/55534656696.pdf
https://static1.squarespace.com/static/604aea6a97201213e037dc4e/t/62c3eed2bc70193e05bfa9f6/1657007827511/diagnostico_segun_sampieri.pdf
https://dodedogob.weebly.com/uploads/1/3/1/3/131382673/fakojirejojifujukafe.pdf
https://repamepofasepa.weebly.com/uploads/1/3/1/4/131437198/pogaximulutub.pdf

